A previously developed model of a concentrating solar power plant has been modified to accommodate doping the heat transfer fluid (HTF) with nanoparticles. The model with its unalloyed HTF has been validated with actual operating data beforehand. The thermo-physical properties of the HTF were modified to account for the nanoparticle doping. The nanoparticle content in the HTF was then varied to evaluate its influence on solar power generation. The model was run to simulate plant operation on four different days representing the four different seasons. As the nanoparticle concentration was increased, heat losses were slightly reduced, transient warm up heat was increased, transient cool down heat was reduced, and the overall impact on power generation was trivial. Doping HTFs with nanoparticles does not seem promising for solar thermal power generation from a performance perspective. Moreover, doping HTFs with nanoparticles involves many other operational challenges such as sedimentation and abrasion.

References

References
1.
Abutayeh
,
M.
,
Alazzam
,
A.
, and
El-Khasawneh
,
B.
,
2014
, “
Balancing Heat Transfer Fluid Flow in Solar Fields
,”
Sol. Energy J.
,
105
, pp.
381
389
.
2.
Shamshirgaran
,
R.
,
Assadi
,
M. K.
,
Al-Kayiem
,
H.
, and
Korada
,
V.
,
2018
, “
Energetic and Exergetic Performance of Solar Flat-Plate Collector Working With Cu Nanofluid
,”
ASME J. Sol. Energy Eng.
,
140
(
3
), p.
031002
.
3.
Charjouei
,
M. M.
,
Edalatpour
,
M.
, and
Solano
,
J. P.
,
2017
, “
Numerical Study on Conjugated Laminar Mixed Convection of Alumina/Water Nanofluid Flow, Heat Transfer, and Entropy Generation Within a Tube-on-Sheet Flat Plate Solar Collector
,”
ASME J. Sol. Energy Eng.
,
139
(
4
), p.
041011
.
4.
Lee
,
B.
,
Park
,
K.
,
Walsh
,
T.
, and
Xu
,
L.
,
2012
, “
Radiative Heat Transfer Analysis in Plasmonic Nanofluids for Direct Solar Thermal Absorption
,”
ASME J. Sol. Energy Eng.
,
134
(
2
), p.
021009
.
5.
Chougule
,
S. S.
,
Sahu
,
S. K.
, and
Pise
,
A. T.
,
2013
, “
Thermal Performance of Two Phase Thermosyphon Flat-Plate Solar Collectors Using Nanofluid
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p.
014503
.
6.
Khakrah
,
H.
,
Shamloo
,
A.
, and
Hannani
,
S. K.
,
2017
, “
Determination of Parabolic Trough Solar Collector Efficiency Using Nanofluid: A Comprehensive Numerical Study
,”
ASME J. Sol. Energy Eng.
,
139
(
5
), p.
051006
.
7.
Bortolato
,
M.
,
Dugaria
,
S.
,
Agresti
,
F.
,
Barison
,
S.
,
Fedele
,
L.
,
Sani
,
E.
, and
Del Col
,
D.
,
2017
, “
Investigation of a Single Wall Carbon Nanohorn-Based Nanofluid in a Full-Scale Direct Absorption Parabolic Trough Solar Collector
,”
Energy Convers. Manage.
,
150
, pp.
673
703
.
8.
Mwesigye
,
A.
,
Yilmaz
,
I. H.
, and
Meyer
,
J. P.
,
2018
, “
Numerical Analysis of the Thermal and Thermodynamic Performance of a Parabolic Trough Solar Collector Using SWCNTs-Therminol VP-1 Nanofluid
,”
Renewable Energy
,
119
, pp.
844
862
.
9.
Gómez-Villarejo
,
R.
,
Martín
,
E. I.
,
Navas
,
J.
,
Sánchez-Coronilla
,
A.
,
Aguilar
,
T.
,
Gallardo
,
J. J.
,
Alcántara
,
R.
,
Santos
,
D. D.
,
Carrillo-Berdugo
,
I.
, and
Fernández-Lorenzo
,
C.
,
2017
, “
Ag-Based Nanofluidic System to Enhance Heat Transfer Fluids for Concentrating Solar Power: Nano-Level Insights
,”
Appl. Energy
,
119
, pp.
19
29
.
10.
Mwesigye
,
A.
, and
Meyer
,
J. P.
,
2017
, “
Optimal Thermal and Thermodynamic Performance of a Solar Parabolic Trough Receiver With Different Nanofluids and at Different Concentration Ratios
,”
Appl. Energy
,
193
, pp.
393
413
.
11.
Khullar
,
V.
,
Tyagi
,
H.
,
Otanicar
,
T. P.
,
Phelan
,
P. E.
,
Singh
,
H.
, and
Taylor
,
R. A.
,
2013
, “
Solar Energy Harvesting Using Nanofluids-Based Concentrating Solar Collector
,”
ASME J. Nanotechnol. Eng. Med.
,
3
(
3
), p.
031003
.
12.
Abutayeh
,
M.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2012
, “
Solar Thermal Power Plant Simulation
,”
Environ. Prog. Sustainable Energy J.
,
32
(
2
), pp.
417
424
.
13.
Al-Hanaei
,
S.
,
Al-Shomali
,
S.
, and
Abutayeh
,
M.
,
2016
, “
Performance Model of Shams I Solar Power Plant
,”
Heat Transfer Eng. J.
,
37
(
17
), pp.
1445
1454
.
14.
Perry
,
R. H.
, and
Green
,
D.
,
1984
,
Perry's Chemical Engineers' Handbook
,
McGraw-Hill
,
New York
.
15.
Solutia
,
2004
,
Therminol 66 Heat Transfer Fluid
,
Technical Bulletin
,
St. Louis, MO
.
16.
Abu-Nada
,
E.
, and
Oztop
,
H. F.
,
2009
, “
Effects of Inclination Angle on Natural Convection in Enclosures Filled With Cu–Water Nanofluid
,”
Int. J. Heat Fluid Flow
,
30
(
4
), pp.
669
678
.
17.
Chase
,
M. W.
,
1998
, “
NIST–JANAF Themochemical Tables (Journal of Physical and Chemical Reference)
,” Vol. 9, American Chemical Society, Washington, DC.
18.
Abu-Nada
,
E.
,
2011
, “
Rayleigh–Bénard Convection in Nanofluids: Effects of Temperature Dependent Properties
,”
Int. J. Therm. Sci.
,
50
(
9
), pp.
1720
1730
.
19.
Abutayeh
,
M.
,
Alazzam
,
A.
, and
El-Khasawneh
,
B.
,
2015
, “
Optimizing Thermal Energy Storage Operation
,”
Sol. Energy J.
,
120
, pp.
318
329
.
You do not currently have access to this content.