This study presents an experimental investigation on the effects of winglets on the near wake flow around the tip region and on the tip vortex characteristics downstream of a 0.94 m diameter three-bladed horizontal axis wind turbine (HAWT) rotor. Phase-locked 2D particle image velocimetry (PIV) measurements are performed with and without winglets covering 120 deg of azimuthal progression of the rotor. The impact of using winglets on the flow field near the wake boundary as well as on the tip vortex characteristics such as the vortex convection, vortex core size, and core expansion as well as the resultant induced drag on the rotor are investigated. Results show that winglets initially generate an asymmetric co-rotating vortex pair, which eventually merge together after about ten tip chords downstream to create a single but nonuniform vortex structure. Mutual induction of the initial double vortex structure causes a faster downstream convection and a radially outward motion of tip vortices compared to the baseline case. The wake boundary is shifted radially outward, velocity gradients are diffused, and vorticity and turbulent kinetic energy levels are significantly reduced across the wake boundary. The tip vortex core sizes are three times as big compared to those of the baseline case, and within the vortex core, vorticity and turbulent kinetic energy levels are reduced more than 50%. Results show consistency with various vortex core and expansion models albeit with adjusted model coefficients for the winglet case. The estimated induced drag reduction is about 15% when winglets are implemented.

References

1.
Sohn
,
M. H.
, and
Chang
,
J. W.
,
2012
, “
Visualization and PIV Study of Wing-Tip Vortices for Three Different Tip Configurations
,”
Aerosp. Sci. Technol.
,
16
(
1
), pp.
40
46
.
2.
Johansen
,
J.
, and
Sørensen
,
N.
,
2006
, “
Aerodynamic Investigation of Winglets on Wind Turbine Blades Using CFD
,” Risø National Laboratory, Roskilde, Denmark, Report No.
Risø-R-1543(EN)
.http://cms.education.gov.il/NR/rdonlyres/D9F6FC7B-A508-43C8-BB34-5C6D8AE0346D/178684/risr1543.pdf
3.
Gaunaa
,
M.
, and
Johansen
,
J.
,
2007
, “
Determination of the Maximum Aerodynamic Efficiency of Wind Turbine Rotors With Winglets
,”
J. Phys. Conf. Ser.
,
75
, p.
012006
.
4.
Gertz
,
D.
,
Johnson
,
D. A.
, and
Swytink-Binnema
,
N.
,
2012
, “
An Evaluation Testbed for Wind Turbine Blade Tip Designs - Winglet Results
,”
Wind Eng.
,
36
(
4
), pp.
389
410
.
5.
Elfarra
,
M. A.
,
Sezer-Uzol
,
N.
, and
Akmandor
,
I. S.
,
2014
, “
NREL VI Rotor Blade: Numerical Investigation and Winglet Design and Optimization Using CFD
,”
Wind Energy.
,
17
(
4
), pp.
605
626
.
6.
Tobin
,
N.
,
Hamed
,
A.
, and
Chamorro
,
L.
,
2015
, “
An Experimental Study on the Effects of Winglets on the Wake and Performance of a Model Wind Turbine
,”
Energies.
,
8
(
10
), pp.
11955
11972
.
7.
Shimizu
,
Y.
,
Ismaili
,
E.
,
Kamada
,
Y.
, and
Maeda
,
T.
,
2003
, “
Power Augmentation of a HAWT by Mie-Type Tip Vanes, Considering Wind Tunnel Flow Visualisation, Blade-Aspect Ratios and Reynolds Number
,”
Wind Eng.
,
27
(
3
), pp.
183
194
.
8.
Abdulrahim
,
A.
,
Anik
,
E.
, and
Uzol
,
O.
,
2016
, “
Effects of Mie Vanes and Tip Injection on the Performance and Wake Characteristics of a HAWT
,”
AIAA
Paper No. 2016-0519.https://arc.aiaa.org/doi/10.2514/6.2016-0519
9.
Ostovan
,
Y.
, and
Uzol
,
O.
,
2016
, “
Experimental Study on the Effects of Winglets on the Performance of Two Interacting Horizontal Axis Model Wind Turbines
,”
J. Phys. Conf. Ser.
,
753
, p.
022015
.
10.
Grant
,
I.
,
Mo
,
M.
,
Pan
,
X.
,
Parkin
,
P.
,
Powell
,
J.
,
Reinecke
,
H.
,
Shuang
,
K.
,
Coton
,
F.
, and
Lee
,
D.
,
2000
, “
An Experimental and Numerical Study of the Vortex Filaments in the Wake of an Operational, Horizontal-Axis, Wind Turbine
,”
J. Wind Eng. Ind. Aerodyn.
,
85
(
2
), pp.
177
189
.
11.
Xiao
,
J. P.
,
Wu
,
J.
,
Chen
,
L.
, and
Shi
,
Z. Y.
,
2011
, “
Particle Image Velocimetry (PIV) Measurements of Tip Vortex Wake Structure of Wind Turbine
,”
Appl. Math. Mech. (English Ed.)
,
32
(
6
), pp.
729
738
.
12.
Massouh
,
F.
, and
Dobrev
,
I.
,
2014
, “
Investigation of Wind Turbine Flow and Wake
,”
J. Fluid Sci. Technol.
,
9
, pp.
167
176
.
13.
Krogstad
,
P. Å.
, and
Lund
,
J. A.
,
2012
, “
An Experimental and Numerical Study of the Performance of a Model Turbine
,”
Wind Energy.
,
15
(
3
), pp.
443
457
.
14.
Krogstad
,
P. Å.
, and
Eriksen
,
P. E.
,
2013
, “
Blind Test” Calculations of the Performance and Wake Development for a Model Wind Turbine
,”
Renewable Energy
,
50
, pp.
325
333
.
15.
Pierella
,
F.
,
Krogstad
,
P. Å.
, and
Sætran
,
L.
,
2014
, “
Blind Test 2 Calculations for Two in-Line Model Wind Turbines Where the Downstream Turbine Operates at Various Rotational Speeds
,”
Renewable Energy
,
70
, pp.
62
77
.
16.
Krogstad
,
P. Å.
,
Sætran
,
L.
, and
Adaramola
,
M. S.
,
2015
, “
Blind Test 3” Calculations of the Performance and Wake Development behind Two in-Line and Offset Model Wind Turbines
,”
J. Fluids Struct.
,
52
, pp.
65
80
.
17.
Anik
,
E.
,
Abdulrahim
,
A.
,
Ostovan
,
Y.
,
Mercan
,
B.
, and
Uzol
,
O.
,
2014
, “
Active Control of the Tip Vortex: An Experimental Investigation on the Performance Characteristics of a Model Turbine
,”
J. Phys. Conf. Ser.
,
524
, p.
012098
.
18.
Abdulrahim
,
A.
,
Anik
,
E.
,
Ostovan
,
Y.
, and
Uzol
,
O.
,
2016
, “
Effects of Tip Injection on the Performance and Near Wake Characteristics of a Model Wind Turbine Rotor
,”
Renewable Energy.
,
88
, pp.
73
82
.
19.
Maughmer
,
M. D.
,
Swan
,
T. S.
, and
Willits
,
S. M.
,
2002
, “
Design and Testing of a Winglet Airfoil for Low-Speed Aircraft
,”
J. Aircr.
,
39
(
4
), pp.
654
661
.
20.
Keane
,
R. D.
, and
Adrian
,
R. J.
,
1991
, “
Optimization of Particle Image Velocimeters—II: Multiple Pulsed Systems
,”
Meas. Sci. Technol.
,
2
, pp. 963–974.
21.
Raffel
,
M.
,
Willert
,
C. E.
,
Scarano
,
F.
,
Kähler
,
C. J.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2018
,
Particle Image Velocimetry
,
Springer International Publishing
,
Cham, Switzerland
.
22.
Uzol
,
O.
, and
Camci
,
C.
,
2001
, “
The Effect of Sample Size, Turbulence Intensity and the Velocity Field on the Experimental Accuracy of Ensemble Averaged PIV Measurements
,”
DLR-Mitteilung
, pp.
1457
1465
.
23.
Uzol
,
O.
,
Chow
,
Y.-C.
,
Katz
,
J.
, and
Meneveau
,
C.
,
2002
, “
Experimental Investigation of Unsteady Flow Field Within a Two-Stage Axial Turbomachine Using Particle Image Velocimetry
,”
ASME J. Turbomach.
,
124
(
4
), p.
542
.
24.
Van der Wall
,
B. G.
, and
Richard
,
H.
,
2006
, “
Analysis Methodology for 3C-PIV Data of Rotary Wing Vortices
,”
Exp. Fluids.
,
40
(
5
), pp.
798
812
.
25.
Devenport
,
W. J.
,
Vogel
,
C. M.
, and
Zsoldos
,
J. S.
,
1999
, “
Flow Structure Produced by the Interaction and Merger of a Pair of Co-Rotating Wing-Tip Vortices
,”
J. Fluid Mech.
,
394
, pp.
357
377
.
26.
Romeos
,
A.
,
Giannadakis
,
A.
,
Perrakis
,
K.
, and
Panidis
,
T.
,
2016
, “
Co-Rotating Vortex Interaction
,”
Aircr. Eng. Aerosp. Technol.
,
88
(
2
), pp.
285
293
.
27.
Rankine
,
W. J. M.
,
1858
,
Manual of Applied Mechanics
, C. Griffen Co., London.
28.
Oseen
,
C. W.
,
1911
, “
Über Wirbelbewegung in Einer Reibenden Flüssigkeit
,” Ark. Foer Mat. Astron. Och Fys.,
7
, pp. 1–13.
29.
Scully
,
M. P.
,
1975
, “
Computation of Helicopter Rotor Wake Geometry and Its Influence on Rotor Harmonic Airloads
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/64826
30.
Vatistas
,
G. H.
,
Kozel
,
V.
, and
Mih
,
W. C.
,
1991
, “
A Simpler Model for Concentrated Vortices
,”
Exp. Fluids.
,
11
(
1
), pp.
73
76
.
31.
Vatistas
,
G. H.
,
2006
, “
Simple Model for Turbulent Tip Vortices
,”
J. Aircr.
,
43
(
5
), pp.
1577
1579
.
32.
Sant
,
T.
,
van Kuik
,
G.
, and
van Bussel
,
G. J. W.
,
2006
, “
Estimating the Angle of Attack From Blade Pressure Measurements on the NREL Phase VI Rotor Using a Free Wake Vortex Model:axial Conditions
,”
Wind Energy.
,
9
(
6
), pp.
549
577
.
33.
Birch
,
D.
,
Lee
,
T.
,
Mokhtarian
,
F.
, and
Kafyeke
,
F.
,
2004
, “
Structure and Induced Drag of a Tip Vortex
,”
J. Aircr.
,
41
(
5
), pp.
1138
1145
.
34.
Kusunose
,
K.
,
1997
, “
Development of a Universal Wake Survey Data Analysis Code
,”
AIAA
Paper No. AIAA-97-2294.https://arc.aiaa.org/doi/abs/10.2514/6.1997-2294
You do not currently have access to this content.