Advanced and model-based control techniques have become prevalent in modern wind turbine controls in the past decade. These methods are more attractive compared to the commonly used proportional-integral-derivative (PID) controller, as the turbine structural flexibility is increased with multiple and coupled modes. The disturbance accommodating control (DAC) is an effective turbine control approach for the above-rated wind speed region. DAC augments the turbine state-space model with a predefined disturbance waveform model, based on which the controller reduces the impact of wind disturbances on the system output (e.g., rotor speed). However, DAC cannot completely reject the wind disturbance in certain situations, and this results in steady-state regulation errors in the turbine rotor speed and electric power. In this paper, we propose a novel wind turbine pitch control using optimal control theory. The obtained feedback and feedforward control terms function to stabilize the turbine system and reject wind disturbances, respectively, derived systematically based on the Hamilton–Jacobi–Bellman (HJB) equation. Simulation results show that the proposed method achieves desired rotor speed regulation with significantly reduced steady-state errors under turbulent winds, which is simulated on the model of the three-bladed controls advanced research turbine (CART3) using the FAST code.

References

References
1.
Wiser
,
R.
,
Bolinger
,
M.
, and
Barbose
,
G.
,
2015
, “
Wind Technology Market Report
,” U.S. Department of Energy, Oak Ridge, TN, Technical Report.
2.
Kuschke
,
M.
, and
Strunz
,
K.
,
2014
, “
Energy-Efficient Dynamic Drive Control for Wind Power Conversion With PMSG: Modeling and Application of Transfer Function Analysis
,”
IEEE J. Emerging Sel. Top. Power Electron.
,
2
(
1
), pp.
35
46
.
3.
Johnson
,
K. E.
,
Pao
,
L. Y.
,
Balas
,
M. J.
, and
Fingersh
,
L. J.
,
2006
, “
Control of Variable-Speed Wind Turbines: Standard and Adaptive Techniques for Maximizing Energy Capture
,”
IEEE Control Syst.
,
26
(
3
), pp.
70
81
.
4.
Beltran
,
B.
,
Tarek
,
A.
, and
Mohamed
,
E. B.
,
2008
, “
Sliding Mode Power Control of Variable-Speed Wind Energy Conversion Systems
,”
IEEE Trans. Energy Convers.
,
23
(
2
), pp.
551
558
.
5.
Wang
,
J.
,
Wang
,
F.
,
Zhang
,
Z.
,
Li
,
S.
, and
Rodríguez
,
J.
,
2017
, “
Design and Implementation of Disturbance Compensation-Based Enhanced Robust Finite Control Set Predictive Torque Control for Induction Motor Systems
,”
IEEE Trans. Ind. Inf.
,
13
(
5
), pp.
2645
2656
.
6.
Wright
,
A. D.
,
2004
, “
Modern Control Design for Flexible Wind Turbines
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL/TP-500-35816
.https://www.nrel.gov/docs/fy04osti/35816.pdf
7.
Sharpe
,
D.
,
Ekanayake
,
J.
, and
Burton
,
T.
,
2001
,
Wind Energy Handbook
,
Wiley Press
,
Hoboken, NJ
.
8.
Wright
,
A. D.
, and
Fingersh
,
L. J.
,
2008
, “
Advanced Control Design for Wind Turbines—Part I: Control Design, Implementation, and Initial Tests
,” National Renewable Energy Laboratory, Golden, CO, Technical, Report No.
NREL/TP-500-42437
.https://www.nrel.gov/docs/fy08osti/42437.pdf
9.
Laks
,
J. H.
,
Pao
,
L. Y.
, and
Wright
,
A. D.
,
2009
, “
Control of Wind Turbines: Past, Present, and Future
,”
American Control Conference
(
ACC
), St. Louis, MO, June 10–12, pp.
2096
2103
.
10.
Frost
,
S. A.
,
Balas
,
M. J.
, and
Wright
,
A. D.
,
2009
, “
Direct Adaptive Control of a Utility-Scale Wind Turbine for Speed Regulation
,”
Int. J. Robust Nonlinear Control
,
19
(
1
), pp.
59
71
.
11.
Muntean
,
I.
,
Cutululis
,
N.
,
Bratcu
,
A.
, and
Ceangâ
,
E.
,
2005
, “
Optimization of Variable Speed Wind Power Systems Based on a LQG Approach
,”
Control Eng. Pract.
,
13
(
7
), pp.
903
912
.
12.
Yuan
,
Y.
, and
Tang
,
J.
,
2017
, “
Adaptive Pitch Control of Wind Turbine for Load Mitigation Under Structural Uncertainties
,”
Renewable Energy
,
105
(
2017
), pp.
483
494
.
13.
Henriksen
,
L. C.
,
Hansen
,
M. H.
, and
Poulsen
,
N. K.
,
2012
, “
Wind Turbine Control With Constraint Handling: A Model Predictive Control Approach
,”
IET Control Theory Appl.
,
6
(
11
), pp.
1722
1734
.
14.
Odgaard
,
P. F.
,
Larsen
,
L.
,
Wisniewski
,
R.
, and
Hovgaard
,
T.
,
2016
, “
On Using Pareto Optimality to Tune a Linear Model Predictive Controller for Wind Turbines
,”
Renewable Energy
,
87
(
2016
), pp.
884
891
.
15.
Wang
,
N.
, and
Wright
,
A. D.
,
2016
, “
Disturbance Accommodating Control Based Independent Blade Pitch Control Design on CART2
,”
AIAA
Paper No. AIAA 2016-1736.
16.
Wang
,
N.
,
Wright
,
A. D.
, and
Johnson
,
K.
,
2016
, “
Independent Blade Pitch Controller Design for a Three-Bladed Turbine Using Disturbance Accommodating Control
,”
America Control Conference
(
ACC
), Boston, MA, July 6–8, pp.
2301
2306
.
17.
Stol
,
K.
,
Zhao
,
W.
, and
Wright
,
A. D.
,
2006
, “
Individual Blade Pitch Control for the Controls Advanced Research Turbine (CART)
,”
ASME J. Sol. Energy Eng.
,
128
(
4
), pp.
498
505
.
18.
Stol
,
K.
, and
Balas
,
M. J.
,
2002
, “
Periodic Disturbance Accommodating Control for Blade Load Mitigation in Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
125
(
4
), pp.
379
385
.
19.
Wang
,
N.
,
Wright
,
A. D.
, and
Balas
,
M.
,
2017
, “
Disturbance Accommodating Control Design for Wind Turbines Using Solvability Conditions
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
4
), p.
041007
.
20.
Kirk
,
D. E.
,
1970
,
Optimal Control Theory: An Introduction
,
Prentice Hall Press
,
Upper Saddle River, NJ
.
21.
Bottasso
,
C. L.
,
Pizzinelli
,
P.
,
Riboldi
,
C. E. D.
, and
Tasca
,
L.
,
2014
, “
LiDAR-Enabled Model Predictive Control of Wind Turbines With Real-Time Capability
,”
Renewable Energy
,
71
, pp.
442
452
.
22.
Fleming
,
P. A.
,
Aho
,
J.
,
Buckspan
,
A.
,
Ela
E.
,
Zhang
Y.
,
Gevorgian
V.
,
Scholbrock
A.
,
Pao
L.
, and
Damiani
R.
,
2015
, “
Effects of Power Reserve Control on Wind Turbine Structural Loading
,”
Wind Energy
,
19
(
3
), pp.
453
469
.
23.
Jonkman
,
J. M.
, and
Buhl
,
L. J.
,
2005
, “
FAST User's Guide
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL/EL-500-38230
.http://wind.nrel.gov/public/bjonkman/TestPage/FAST.pdf
24.
Badgwell
,
T. A.
, and
Muske
,
K. R.
,
2002
, “
Disturbance Model Design for Linear Model Predictive Control
,”
American Control Conference
(
ACC
), Anchorage, AK, May 8–10, pp.
1
6
.
25.
Maeder
,
U.
,
Borrelli
,
F.
, and
Morari
,
M.
,
2009
, “
Linear Offset-Free Model Predictive Control
,”
Automatica
,
45
(
10
), pp.
2214
2222
.
26.
Dorato
,
P.
,
Cerone
,
V.
, and
Abdallah
,
C.
,
1994
,
Linear-Quadratic Control: An Introduction
,
Simon & Schuster
, New York.
27.
Jonkman
,
B. J.
, and
Buhl
,
L. J.
,
2007
, “
TurbSim User's Guide
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL/TP-500-41136
.https://nwtc.nrel.gov/system/files/TurbSim.pdf
You do not currently have access to this content.