The accuracy of radiometric temperature measurement in radiatively heated environments is severely limited by the combined effects of intense reflected radiation and unknown, dynamically changing emissivity, which induces two correlated and variable error terms. While the recently demonstrated double modulation pyrometry (DMP) eliminates the contribution of reflected radiation, it still suffers from the shortcomings of single-waveband pyrometry: it requires knowledge of the emissivity to retrieve the true temperature from the thermal signal. Here, we demonstrate an improvement of DMP incorporating the in situ measurement of reflectance. The method is implemented at Paul Scherrer Institute (PSI) in its 50 kW high-flux solar simulator and used to measure the temperature of ceramic foams (SiSiC, ZrO2, and Al2O3) during fast heat-up. The enhancement allows DMP to determine the true temperature despite a dynamically changing emissivity and to identify well-documented signature changes in ZrO2 and Al2O3. The method also allows us to study the two dominant error sources by separately tracking the evolution of two error components during heat-up. Furthermore, we obtain measurements from a solar receiver, where the cavity reflection error limits measurement accuracy. DMP can be used as an accurate radiometric thermometer in the adverse conditions of concentrated radiation, and as a diagnostic tool to characterize materials with dynamic optical properties. Its simple design and ability to correct for both errors makes it a useful tool not only in solar simulators but also in concentrated solar facilities.

References

References
1.
Hernandez
,
D.
,
Olalde
,
G.
,
Gineste
,
J. M.
, and
Gueymard
,
C.
,
2004
, “
Analysis and Experimental Results of Solar-Blind Temperature Measurements in Solar Furnaces
,”
ASME J. Sol. Energy Eng.
,
126
(
1
), pp.
645
653
.
2.
Alxneit
,
I.
,
2011
, “
Measuring Temperatures in a High Concentration Solar Simulator—Demonstration of the Principle
,”
Sol. Energy
,
85
(
3
), pp.
516
522
.
3.
Potamias
,
D.
,
Alxneit
,
I.
, and
Wokaun
,
A.
,
2017
, “
Double Modulation Pyrometry: A Radiometric Method to Measure Surface Temperatures of Directly Irradiated Samples
,”
Rev. Sci. Instrum.
,
88
(
9
), p.
095112
.
4.
Gardner
,
J. L.
, and
Jones
,
T. P.
,
1980
, “
Multi-Wavelength Radiation Pyrometry Where Reflectance Is Measured to Estimate Emissivity
,”
J. Phys. E Sci. Instrum.
,
13
(
3
), pp.
306
310
.
5.
Petrasch
,
J.
,
Coray
,
P.
,
Meier
,
A.
,
Brack
,
M.
,
Haberling
,
P.
,
Wuillemin
,
D.
, and
Steinfeld
,
A.
,
2007
, “
A Novel 50 kW 11,000 Suns High-Flux Solar Simulator Based on an Array of Xenon Arc Lamps
,”
ASME J. Sol. Energy Eng.
,
129
(
4
), pp.
405
411
.
6.
Alaa
,
M.
,
Rady
,
M.
,
Attia
,
M.
, and
Ewais
,
E.
,
2016
, “
Optical Study of Using Ceramic Foams for Volumetric Solar Receivers
,”
International Renewable and Sustainable Energy Conference (IRSEC)
, pp.
284
289
.
7.
Kribus
,
A.
,
Gray
,
Y.
,
Grijnevich
,
M.
,
Mittelman
,
G.
,
Mey-Cloutier
,
S.
, and
Caliot
,
C.
,
2014
, “
The Promise and Challenge of Solar Volumetric Absorbers
,”
Sol. Energy
,
110
, pp.
463
481
.
8.
Kuwabara
,
A.
,
Tohei
,
T.
,
Yamamoto
,
T.
, and
Tanaka
,
I.
,
2005
, “
Ab Initio
,”
Phys. Rev. B
,
71
(
6
), p.
064301
.
9.
Vorob'ev
,
A. Y.
,
Petrov
,
V. A.
,
Titov
,
V. E.
, and
Chernyshov
,
A. P.
,
2007
, “
The Reflectivity of Alumina Ceramics Under Intense Surface Heating and Subsequent Free Cooling
,”
High Temp.
,
45
(
1
), pp.
13
21
.
10.
Cagran
,
C. P.
,
Hanssen
,
L. M.
,
Noorma
,
M.
,
Gura
,
A. V.
, and
Mekhontsev
,
S. N.
,
2007
, “
Temperature-Resolved Infrared Spectral Emissivity of SiC and Pt–10Rh for Temperatures Up to 900 °C
,”
Int. J. Thermophys.
,
28
(
2
), pp.
581
597
.
11.
Rousseau
,
B.
,
Guevelou
,
S.
,
Mekeze-Monthe
,
A.
,
Vicente
,
J.
,
Campo
,
L. D.
,
Meneses
,
D. D. S.
,
Echegut
,
P.
,
Caliot
,
C.
, and
Flamant
,
G.
,
2016
, “
Tuning the Spectral Emittance of α-SiC Open-Cell Foams Up to 1300 K with Their Macro Porosity
,”
AIP Adv.
,
6
(
6
), p.
065226
.
12.
Sakuma
,
F.
, and
Hattori
,
S.
,
1983
, “
Establishing a Practical Temperature Standard by Using a Narrow-Band Radiation Thermometer With a Silicon Detector
,”
Bull. NRLM
,
32
(
2
), pp.
91
97
.
13.
Breeze
,
R. H.
, and
Ke
,
B.
,
1972
, “
Some Comments on Xenon Arc Lamp Stability
,”
Rev. Sci. Instrum.
,
43
(
5
), pp.
821
823
.
14.
Rolt, S.
,
Clark, P.
,
Schmoll, J.
, and
Shaw, B. J. R.
, 2016, “
Xenon Arc Lamp Spectral Radiance Modelling for Satellite Instrument Calibration
,”
Proc. SPIE
,
9904
, p. 99044V.
15.
Wieghardt
,
K.
,
Funken
,
K.-H.
,
Dibowski
,
G.
,
Hoffschmidt
,
B.
,
Laaber
,
D.
,
Hilger
,
P.
, and
Eßer
,
K.-P.
,
2016
, “
Synlight—The World's Largest Artificial Sun
,”
AIP Conference
,
1734
(
1
), p.
030038
.
16.
Bader
,
R.
,
Haussener
,
S.
, and
Lipiski
,
W.
,
2014
, “
Optical Design of Multisource High-Flux Solar Simulators
,”
ASME J. Sol. Energy Eng.
,
137
(
2
), p.
021012
.
17.
Wilson
,
R. G.
,
1965
, “
Hemispherical Spectral Emittance of Ablation Chars, Carbon, and Zirconia to 3700 Deg K
,” National Aeronautics and Space Administration, Hampton VA, Langley Research Center, NASA Technical Report No. NASA TN D-2704.
18.
Teodorescu
,
G.
, and
Jones
,
P. D.
,
2008
, “
Spectral and Directional Emittance of Alumina at 823 K
,”
J. Mater. Sci.
,
43
(
22
), pp.
7225
7229
.
19.
Tschudi
,
H. R.
, and
Schubnell
,
M.
,
1999
, “
Measuring Temperatures in the Presence of External Radiation by Flash Assisted Multiwavelength Pyrometry
,”
Rev. Sci. Instrum.
,
70
(
6
), pp.
2719
2727
.
20.
Marxer
,
D.
,
Furler
,
P.
,
Takacs
,
M.
, and
Steinfeld
,
A.
,
2017
, “
Solar Thermochemical Splitting of CO2 into Separate Streams of CO and O2 with High Selectivity, Stability, Conversion, and Efficiency
,”
Energy Environ. Sci.
,
10
(
5
), pp.
1142
1149
.
21.
Kitamura
,
R.
,
Pilon
,
L.
, and
Jonasz
,
M.
,
2007
, “
Optical Constants of Silica Glass From Extreme Ultraviolet to Far Infrared at Near Room Temperature
,”
Appl. Opt.
,
46
(
33
), pp.
8118
8133
.
22.
Freid
,
A. P.
,
Johnson
,
P. K.
,
Musella
,
M.
,
Muller
,
R.
,
Steinbrenner
,
J. E.
, and
Palumbo
,
R. D.
,
2005
, “
Solar Blind Pyrometer Temperature Measurements in High Temperature Solar Thermal Reactors: A Method for Correcting the System-Sensor Cavity Reflection Error
,”
ASME J. Sol. Energy Eng.
,
127
(
1
), pp.
86
93
.
You do not currently have access to this content.