Solar harvesting designs aim to optimize energy output per unit area. When it comes to choosing between rooftop technologies for generating heat and/or electricity from the sun, though, the literature has favored qualitative arguments over quantitative comparisons. In this paper, an agnostic perspective will be used to evaluate several solar collector designs—thermal, photovoltaic (PV), and hybrid (PV/T) systems—which can result in medium temperature heat for industry rooftops. Using annual trnsys simulations in several characteristic global locations, it was found that a maximum solar contribution (for all selected locations) of 79.1% can be achieved for a sterilization process with a solar thermal (ST) system as compared to 40.6% for a PV system. A 43.2%solar contribution can be obtained with a thermally coupled PV/T, while an uncoupled PV/T beam splitting collector can achieve 84.2%. Lastly, PV and ST were compared in a side-by-side configuration, indicating that this scenario is also feasible since it provides a solar contribution of 75.2%. It was found that the location's direct normal incident (DNI) and global horizontal irradiation (GHI) are the dominant factors in determining the best technology for industrial heating applications. Overall, this paper is significant in that it introduces a comparative simulation strategy to analyze a wide variety of solar technologies for global industrial heat applications.

References

References
1.
The Climate Group
,
2016
, “
RE100 Annual Report 2016: Growing Market Demand for Renewable Power
,” The Climate Group, London, accessed July 8, 2017, https://www.theclimategroup.org/sites/default/files/2016_annual_report.pdf
2.
Kalogirou
,
S.
,
2002
, “
The Potential of Solar Industrial Process Heat Applications
,”
Appl. Energy
,
76
(
4
), pp.
337
361
.
3.
Hollick
,
1998
, “
Solar Cogeneration Panels
,”
Renewable Energy
,
15
(
1–4
), pp.
195
200
.
4.
Bakker
,
Z.
,
Elswijk
,
S.
, and
Jong
,
2005
, “
Performance and Costs of a Roof-Sized PV/Thermal Array Combined With a Ground Coupled Heat Pump
,”
Sol. Energy
,
78
(
2
), pp.
331
339
.
5.
Vannoni
,
B.
, and
Drigo
,
2008
, “
Potential for Solar Heating Industrial Processes: Report Within IEA SHC Task33/IV
,” University of Rome, Rome, Italy,
Technical Report
.http://task33.iea-shc.org/Data/Sites/1/publications/task33-Potential_for_Solar_Heat_in_Industrial_Processes.pdf
6.
Lauterbach
,
C.
,
Schmitt
,
B.
,
Jordan
,
U.
, and
Vajen
,
K.
,
2012
, “
The Potential of Solar Heat for Industrial Processes in Germany
,”
Renewable Sustainable Energy Rev.
,
16
(
7
), pp.
5121
5130
.
7.
Huld
,
T.
,
Gottschalg
,
R.
,
Beyer
,
H. G.
, and
Topič
,
M.
,
2010
, “
Mapping the Performance of PV Modules, Effects of Module Type and Data Averaging
,”
Sol. Energy
,
84
(
2
), pp.
324
338
.
8.
Carr
,
A.
, and
Pryor
,
T.
,
2004
, “
A Comparison of the Performance of Different PV Module Types in Temperate Climates
,”
Sol. Energy
,
76
(
1–3
), pp.
285
294
.
9.
He
,
W.
,
Chow
,
T.
,
Ji
,
J.
,
Lu
,
J.
,
Pei
,
G.
, and
Chan
,
L.
,
2006
, “
Hybrid Photovoltaic and Thermal Solar-Collector Designed for Natural Circulation of Water
,”
Appl. Energy
,
83
(
3
), pp.
199
210
.
10.
Mojiri
,
A.
,
Taylor
,
R.
,
Thomsen
,
E.
, and
Rosengarten
,
G.
,
2013
, “
Spectral Beam Splitting for Efficient Conversion of Solar Energy—A Review
,”
Renewable Sustainable Energy Rev.
,
28
, pp.
654
663
.
11.
Hjerrild
,
N. E.
,
Mesgari
,
S.
,
Crisostomo
,
F.
,
Scott
,
J. A.
,
Amal
,
R.
, and
Taylor
,
R. A.
,
2016
, “
Spectrum Splitting Using Gold and Silver Nanofluids for Photovoltaic/Thermal Collectors
,”
IEEE 43rd Photovoltaic Specialists Conference (PVSC)
, pp.
3518
3523
.
12.
Crisostomo
,
F.
,
Taylor
,
R.
,
Rosengarten
,
G.
,
Everett
,
V.
, and
Hawkes
,
E.
,
2014
, “
Performance of a Linear Fresnel-Based Concentrating Hybrid PV/T Collector Using Selective Spectral Beam Splitting
,”
52nd Annual Conference,
Baltimore, MD, June 22–27.
13.
Crisostomo
,
F.
,
Taylor
,
R. A.
,
Mojiri
,
A.
,
Hawkes
,
E. R.
,
Surjadi
,
D.
, and
Rosengarten
,
G.
,
2013
, “
Beam Splitting System for the Development of a Concentrating Linear Fresnel Solar Hybrid PV/T Collector
,”
ASME
Paper No. HT2013-17221.
14.
Crisostomo
,
F.
,
Taylor
,
R. A.
,
Zhang
,
T.
,
Perez-Wurfl
,
I.
,
Rosengarten
,
G.
,
Everett
,
V.
, and
Hawkes
,
E. R.
,
2014
, “
Experimental Testing of SiNx/SiO2 Thin Film Filters for a Concentrating Solar Hybrid PV/T Collector
,”
Renewable Energy
,
72
, pp.
79
87
.
15.
Hjerrild
,
N. E.
,
Mesgari
,
S.
,
Crisostomo
,
F.
,
Scott
,
J. A.
,
Amal
,
R.
, and
Taylor
,
R. A.
,
2016
, “
Hybrid PV/T Enhancement Using Selectively Absorbing Ag–SiO 2/Carbon Nanofluids
,”
Sol. Energy Mater. Sol. Cells
,
147
, pp.
281
287
.
16.
Crisostomo
,
F.
,
Becker
,
J.
,
Mesgari
,
S.
,
Hjerrild
,
N.
, and
Taylor
,
R. A.
,
2015
, “
Desing and On-Sun Testing of a Hybrid PVT Prototype Using a Nanofluid-Based Selective Absorption Filter
,”
12th International Conference on the European Energy Market
(
EEM
), Lisbon, Portugal, May 19–22, pp.
1
5
.
17.
An
,
W.
,
Wu
,
J.
,
Zhu
,
T.
, and
Zhu
,
Q.
,
2016
, “
Experimental Investigation of a Concentrating PV/T Collector With Cu9S5 Nanofluid Spectral Splitting Filter
,”
Appl. Energy
,
184
, pp.
197
206
.
18.
Taylor
,
R. A.
,
Otanicar
,
T.
, and
Rosengarten
,
G.
,
2012
, “
Nanofluid-Based Optical Filter Optimization for PV/T Systems
,”
Light: Sci. Appl.
,
1
(
10
), p.
e34
.
19.
Otanicar
,
T. P.
,
Theisen
,
S.
,
Norman
,
T.
,
Tyagi
,
H.
, and
Taylor
,
R. A.
,
2015
, “
Envisioning Advanced Solar Electricity Generation: Parametric Studies of CPV/T Systems With Spectral Filtering and High Temperature PV
,”
Appl. Energy
,
140
, pp.
224
233
.
20.
Hassani
,
S.
,
Saidur
,
R.
,
Mekhilef
,
S.
, and
Taylor
,
R. A.
,
2016
, “
Environmental and Exergy Benefit of Nanofluid-Based Hybrid PV/T Systems
,”
Energy Convers. Manage.
,
123
, pp.
431
444
.
21.
Hassani
,
S.
,
Taylor
,
R. A.
,
Mekhilef
,
S.
, and
Saidur
,
R.
,
2016
, “
A Cascade Nanofluid-Based PV/T System With Optimized Optical and Thermal Properties
,”
Energy
,
112
, pp.
963
975
.
22.
Mittal
,
T.
,
Saroha
,
S.
,
Bhalla
,
V.
,
Khullar
,
V.
,
Tyagi
,
H.
,
Taylor
,
R. A.
, and
Otanicar
,
T. P.
,
2013
, “
Numerical Study of Solar Photovoltaic/Thermal (PV/T) Hybrid Collector Using Nanofluids
,”
ASME
Paper No. MNHMT2013-22090.
23.
Pathak
,
M.
,
Sanders
,
P.
, and
Pearce
,
J.
,
2014
, “
Optimizing Limited Solar Roof Access by Exergy Analysis of Solar Thermal, Photovoltaic, and Hybrid Photovoltaic Thermal Systems
,”
Appl. Energy
,
120
, pp.
115
124
.
24.
Kew
,
P.
,
1982
, “
Heat Pumps for Industrial Waste Heat Recovery—A Summary of Required Technical and Economic Criteria
,”
J. Heat Recovery Syst.
,
2
(
3
), pp.
283
296
.
25.
Wallin
,
E.
, and
Berntsson
,
T.
,
1994
, “
Integration of Heat Pumps in Industrial Processes
,”
Heat Recovery Syst. CHP
,
14
(
3
), pp.
287
296
.
26.
Aye
,
L.
,
Charters
,
W.
, and
Chaichana
,
C.
,
2002
, “
Solar Heat Pump Systems for Domestic Hot Water
,”
Sol. Energy
,
73
(
3
), pp.
169
175
.
27.
Chaichana
,
C.
,
Aye
,
L.
, and
Charters
,
W. W.
,
2003
, “
Natural Working Fluids for Solar-Boosted Heat Pumps
,”
Int. J. Refrig.
,
26
(
6
), pp.
637
643
.
28.
Bany Mousa
,
O.
, and
Taylor
,
R.
, 2016, “
Solar Thermal Sterilization: A TRNSYS Performance Analysis
,”
Asia Pacific Solar Research Conference
, Sydney, Australia, Dec 4–6.http://apvi.org.au/solar-research-conference/wp-content/uploads/2017/02/O-Bany-Mousa-and-R-Taylor-Solar-Thermal-Sterilization-A-TRNSYS-Performance-Analysis.pdf
29.
Staffell
,
I.
,
2009
, “
A Review of Domestic Heat Pump Coefficient of Performance
,” Technical Report, accessed June 23, 2017, http://www.academia.edu/1073992/A_review_of_domestic_heat_pump_coefficient_of_performance
30.
Johnson
,
R. K.
,
2013
, “
Measured Performance of a Low Temperature Air Source Heat Pump
,” U.S. Department of Energy Office of Scientific and Technical Information, Oak Ridge, TN, Technical Report No.
NREL/SR-5500-56393
.
31.
Vengatesh
,
R. P.
, and
Rajan
,
S. E.
,
2011
, “
Investigation of Cloudless Solar Radiation With PV Module Employing Matlab-Simulink
,”
International Conference on Emerging Trends in Electrical and Computer Technology
, Nagercoil, India, Mar. 23–24, pp.
141
147
.
32.
Nanjannavar
,
V.
,
Gandhi
,
P.
, and
Patel
,
N.
,
2013
, “
LabVIEW Based PV Cell Characterization and MPPT under Varying Temperature and Irradiance Conditions
,”
Nirma University International Conference on Engineering (NUiCONE)
, pp.
1
6
.
33.
Subudhi
,
B.
, and
Pradhan
,
R.
,
2013
, “
A Comparative Study on Maximum Power Point Tracking Techniques for Photovoltaic Power Systems
,”
IEEE Trans. Sustainable Energy
,
4
(
1
), pp.
89
98
.
34.
Koad
,
R. B.
,
Zobaa
,
A. F.
, and
El-Shahat
,
A.
,
2017
, “
A Novel MPPT Algorithm Based on Particle Swarm Optimization for Photovoltaic Systems
,”
IEEE Trans. Sustainable Energy
,
8
(
2
), pp.
468
476
.
35.
Klein
,
S.
,
2012
, “
TRNSYS 17—A Transient System Simulation Program-Volume 4—Mathematical Reference
,” The Solar Energy Laboratory, University of Wisconsin-Madison, Madison, WI.
36.
Crisostomo
,
F.
,
Taylor
,
R.
,
Surjadi
,
D.
,
Mojiri
,
A.
,
Rosengarten
,
G.
, and
Hawkes
,
E.
,
2015
, “
Spectral Splitting Strategy and Optical Model for the Development of a Concentrating Hybrid PV/T Collector
,”
Appl. Energy
,
141
, pp.
238
246
.
37.
Liu
,
Y.
,
Hu
,
P.
,
Zhang
,
Q.
, and
Chen
,
Z.
,
2014
, “
Thermodynamic and Optical Analysis for a CPV/T Hybrid System With Beam Splitter and Fully Tracked Linear Fresnel Reflector Concentrator Utilizing Sloped Panels
,”
Sol. Energy
,
103
, pp.
191
199
.
38.
Renewable Resource Data Center,
2009
, “
Reference Solar Spectral Irradiance: ASTM G-173
,” National Renewable Energy Laboratory, Golden, CO, accessed July 21, 2018, http://rredc.nrel.gov/solar/spectra/am1.5/astmg173/astmg173.html
39.
Sabry
,
M.
,
Gottschalg
,
R.
,
Betts
,
T.
,
Shaltout
,
M.
,
Hassan
,
A.
,
El-Nicklawy
,
M.
, and
Infield
,
D.
,
2002
, “
Optical Filtering of Solar Radiation to Increase Performance of Concentrator Systems
,” Conference Record of the Twenty-Ninth
IEEE
Photovoltaic Specialists Conference, New Orleans, LA, May 19–24, pp.
1588
1591
.
40.
Kandilli
,
C.
,
2013
, “
Performance Analysis of a Novel Concentrating Photovoltaic Combined System
,”
Energy Convers. Manage.
,
67
, pp.
186
196
.
41.
Crisostomo
,
F.
,
Hjerrild
,
N.
,
Mesgari
,
S.
,
Li
,
Q.
, and
Taylor
,
R. A.
,
2017
, “
A Hybrid PV/T Collector Using Spectrally Selective Absorbing Nanofluids
,”
Appl. Energy
,
193
, pp.
1
14
.
42.
Hjerrild
,
N. E.
,
Mesgari
,
S.
,
Crisostomo
,
F.
,
Scott
,
J. A.
,
Amal
,
R.
,
Jiang
,
X.
, and
Taylor
,
R. A.
,
2015
, “
Selective Solar Absorption of Nanofluids for Photovoltaic/Thermal Collector Enhancement
,”
MRS Online Proc. Libr. Archive
,
1779
, pp.
53
58
.
43.
Hjerrild
,
N. E.
,
Scott
,
J. A.
,
Amal
,
R.
, and
Taylor
,
R. A.
,
2017
, “
Exploring the Effects of Heat and UV Exposure on Glycerol-Based Ag–SiO2 Nanofluids for PV/T Applications
,”
Renewable Energy
,
120
, pp.
266
274
.
44.
Hjerrild
,
N. E.
, and
Taylor
,
R. A.
,
2017
, “
Boosting Solar Energy Conversion With Nanofluids
,”
Phys. Today
,
70
(
12
), pp.
40
45
.
45.
Ni
,
J.
,
Li
,
J.
,
An
,
W.
, and
Zhu
,
T.
,
2018
, “
Performance Analysis of Nanofluid-Based Spectral Splitting PV/T System in Combined Heating and Power Application
,”
Appl. Therm. Eng.
,
129
, pp.
1160
1170
.
46.
An
,
W.
,
Li
,
J.
,
Ni
,
J.
,
Taylor
,
R. A.
, and
Zhu
,
T.
,
2017
, “
Analysis of a Temperature Dependent Optical Window for Nanofluid-Based Spectral Splitting in PV/T Power Generation Applications
,”
Energy Convers. Manage.
,
151
, pp.
23
31
.
47.
EIA
, 2016, “
International Energy Outlook 2016
,” U.S. Energy Information Administration, Washington, DC, accessed July 21, 2018, https://www.eia.gov/outlooks/ieo/pdf/0484(2016).pdf
You do not currently have access to this content.