The present indoor experimental study is focused on performance enhancement of a parabolic trough collector (PTC) with twisted tape insert by incorporating an innovative Soltrace®—mathematical model—differential heating combination. This simulation-based methodology is very useful in analyzing the system behavior under defined environmental conditions. By the use of insert, the circumferential temperature difference has been dropped considerably in all cases compared to plain receiver. Hence, this gain is reflected in both instantaneous and thermo-hydraulic efficiency. As the role of inserts is justified in different thermal parameters, the system evaluation factors have been defined as H-W-B constants. Further, to take into account the influence of enhanced heat transfer on geometry, receiver length optimization has been performed which gave a maximum of 26% short in length of the receiver with best twist ratio under the transition flow regime. Hence, for moderate flow and medium temperature applications, inserts are useful. The range of Reynolds number considered in the experimental study is 2600–24,000 to analyze the flow regime based effect.

References

References
1.
Mwesigye
,
A.
,
Bello-Ochende
,
T.
, and
Meyer
,
J. P.
,
2016
, “
Heat Transfer and Entropy Generation in a Parabolic Trough Receiver With Wall-Detached Twisted Tape Inserts
,”
Int. J. Therm. Sci.
,
99
, pp.
238
257
.
2.
Khanna
,
S.
,
Kedare
,
S. B.
, and
Singh
,
S.
,
2014
, “
Deflection and Stresses in Absorber Tube of Solar Parabolic Trough Due to Circumferential and Axial Flux Variations on Absorber Tube Supported at Multiple Points
,”
Sol. Energy
,
99
, pp.
134
151
.
3.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Tsimpoukis
,
D.
,
2017
, “
Thermal Enhancement of Parabolic Trough Collector With Internally Finned Absorbers
,”
Sol. Energy
,
157
, pp.
514
531
.
4.
Xiangtao
,
G.
,
Fuqiang
,
W.
,
Haiyan
,
W.
,
Jianyu
,
T.
,
Qingzhi
,
L.
, and
Huaizhi
,
H.
,
2017
, “
Heat Transfer Enhancement Analysis of Tube Receiver for Parabolic Trough Solar Collector With Pin Fin Arrays Inserting
,”
Sol. Energy
,
144
, pp.
185
202
.
5.
Bellos
,
E.
,
Tzivanidis
,
C.
,
Daniil
,
I.
, and
Antonopoulos
,
K. A.
,
2017
, “
The Impact of Internal Longitudinal Fins in Parabolic Trough Collectors Operating With Gases
,”
Energy Convers. Manage.
,
135
, pp.
35
54
.
6.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Tsimpoukis
,
D.
,
2017
, “
Multi-Criteria Evaluation of Parabolic Trough Collector With Internally Finner Absorbers
,”
Appl. Energy
,
205
, pp.
540
561
.
7.
Huang
,
Z.
,
Yu
,
G. L.
,
Li
,
Z. Y.
, and
Tao
,
W. Q.
,
2015
, “
Numerical Study on Heat Transfer Enhancement in a Receiver Tube of Parabolic Trough Solar Collector With Dimples, Protrusions and Helical Fins
,”
Energy Procedia
,
69
, pp.
1306
1316
.
8.
Huang
,
Z.
,
Li
,
Z. Y.
,
Yu
,
G. L.
, and
Tao
,
W. Q.
,
2016
, “
Numerical Investigation on Fully-Developed Mixed Turbulent Convection in Dimpled Parabolic Trough Receiver Tubes
,”
Appl. Therm. Energy
,
114
, pp.
1287
1299
.
9.
Chang
,
C.
,
Sciacovelli
,
A.
,
Wu
,
Z.
,
Li
,
X.
,
Li
,
Y.
,
Zhao
,
M.
,
Deng
,
J.
,
Wang
,
Z.
, and
Ding
,
Y.
,
2018
, “
Enhanced Heat Transfer in a Parabolic Trough Solar Receiver by Inserting Rods and Using Molten Salts as a Heat Transfer Fluid
,”
Appl. Energy
,
220
, pp.
337
350
.
10.
Ghomrassi
,
A.
,
Mhiri
,
H.
, and
Bournot
,
P.
,
2015
, “
Numerical Study and Optimisation of Parabolic Trough Solar Collector Receiver Tube
,”
ASME J. Sol. Energy Eng.
,
137
(
5
), p.
051003
.
11.
Ghadirijafarbeigloo
,
S.
,
Zamzamian
,
A. H.
, and
Yaghoubi
,
M.
,
2014
, “
3D Numerical Simulation of Heat Transfer and Turbulent Flow in a Receiver Tube of Solar Parabolic Trough Concentrator With Louvered Twisted-Tape Inserts
,”
Energy Procedia
,
49
, pp.
373
380
.
12.
Zhu
,
X.
,
Zhu
,
L.
, and
Zhao
,
J.
,
2017
, “
Wavy-Type Insert Designed for Managing Highly Concentrated Solar Energy on Absorber Tube of Parabolic Trough Receiver
,”
Energy
,
141
, pp.
1146
1155
.
13.
Jaramillo
,
O. A.
,
Borunda
,
M.
,
Velazquez-Lucho
,
K. M.
, and
Robles
,
M.
,
2016
, “
Parabolic Trough Collector for Low Enthalpy Processes: An Analysis of the Efficiency Enhancement by Using Twisted Tape Inserts
,”
Renewable Energy
,
93
, pp.
125
141
.
14.
Cheng
,
Z. D.
,
He
,
Y. L.
, and
Cui
,
F. Q.
,
2012
, “
Numerical Study of Heat Transfer Enhancement by Unilateral Longitudinal Vortex Generators Inside Parabolic Trough Solar Receivers
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5631
5641
.
15.
Mwesigye
,
A.
,
Bello-Ochende
,
T.
, and
Meyer
,
J. P.
,
2014
, “
Heat Transfer and Thermodynamic Performance of a Parabolic Trough Receiver With Centrally Placed Perforated Plate Inserts
,”
Appl. Energy
,
136
, pp.
989
1003
.
16.
Song
,
X.
,
Dong
,
G.
,
Gao
,
F.
,
Diao
,
X.
,
Zheng
,
L.
, and
Zhou
,
F.
,
2014
, “
A Numerical Study of Parabolic Trough Receiver With Nonuniform Heat Flux and Helical Screw-Tape Inserts
,”
Energy
,
77
, pp.
771
782
.
17.
Kalidasan
,
B.
,
Shankar
,
R.
, and
Srinivas
,
T.
,
2016
, “
Absorber Tube With Internal Hinged Blades for Solar Parabolic Trough Collector
,”
Energy Procedia
,
90
, pp.
463
469
.
18.
Wang
,
P.
,
Liu
,
D. Y.
, and
Xu
,
C.
,
2013
, “
Numerical Study of Heat Transfer Enhancement in the Receiver Tube of Direct Steam Generation With Parabolic Trough by Inserting Metal Foams
,”
Appl. Energy
,
102
, pp.
449
460
.
19.
Ghasemi
,
S. E.
, and
Ranjbar
,
A. A.
,
2017
, “
Numerical Thermal Study on Effect of Porous Rings on Performance of Solar Parabolic Trough Collector
,”
Appl. Therm. Eng.
,
118
, pp.
807
816
.
20.
Reddy
,
K. S.
,
Kumar
,
K. R.
, and
Ajay
,
C. S.
,
2015
, “
Experimental Investigation of Porous Disc Enhanced Receiver for Solar Parabolic Trough Collector
,”
Renewable Energy
,
77
, pp.
308
319
.
21.
Jamal-Abad
,
M. T.
,
Saedodin
,
S.
, and
Aminy
,
M.
,
2017
, “
Experimental Investigation on a Solar Parabolic Trough Collector for Absorber Tube Filled With Porous Media
,”
Renewable Energy
,
107
, pp.
156
163
.
22.
Bitam
,
E. W.
,
Demagh
,
Y.
,
Hachicha
,
A. A.
,
Benmoussa
,
H.
, and
Kabar
,
Y.
,
2018
, “
Numerical Investigation of a Novel Sinusoidal Tube Receiver for Parabolic Trough Technology
,”
Appl. Energy
,
218
, pp.
292
510
.
23.
Fuqiang
,
W.
,
Qingzhi
,
L.
,
Huaizhi
,
H.
, and
Jianyu
,
T.
,
2016
, “
Parabolic Trough Receiver With Corrugated Tube for Improving Heat Transfer and Thermal Deformation Characteristics
,”
Appl. Energy
,
164
, pp.
411
424
.
24.
Fuqiang
,
W.
,
Zhexiang
,
T.
,
Xiangtao
,
G.
,
Jianyu
,
T.
, and
Huaizhi
,
H.
,
2016
, “
Heat Transfer Performance Enhancement and Thermal Strain Restrain of Tube Receiver for Parabolic Trough Solar Collector by Using Asymmetric Outward Convex Corrugated Tube
,”
Energy
,
114
, pp.
275
292
.
25.
Jianfeng
,
L.
,
Xiangyang
,
S.
,
Jing
,
D.
, and
Jianping
,
Y.
,
2013
, “
Transition and Turbulent Convective Heat Transfer of Molten Salt in Spirally Grooved Tube
,”
Exp. Therm. Fluid Sci.
,
47
, pp.
180
185
.
26.
Bellos
,
E.
,
Tzivanidis
,
C.
,
Antonopoulos
,
K. A.
, and
Gkinis
,
G.
,
2016
, “
Thermal Enhancement of Solar Parabolic Trough Collectors by Using Nanofluids and Converging-Diverging Absorber Tube
,”
Renewable Energy
,
94
, pp.
213
222
.
27.
Waghole
,
D. R.
,
Warkhedkar
,
R. M.
,
Kulkarni
,
V. S.
, and
Shrivasta
,
R. K.
,
2014
, “
Experimental Investigations on Heat Transfer and Friction Factor of Silver Nanofluid in Absorber/Receiver of Parabolic Trough Collector With Twisted Tape Inserts
,”
Energy Procedia
,
45
, pp.
558
567
.
28.
Arunachala
,
U. C.
, and
Sandeep
,
H. M.
,
2017
, “
Solar Parabolic Trough Collectors: A Review on Heat Transfer Augmentation Techniques
,”
Renewable Sustainable Energy Rev.
,
69
, pp.
1218
1231
.
29.
Kalogirou
,
S. A.
,
2004
, “
Solar Thermal Collectors and Applications
,”
Prog. Energy Combust. Sci.
,”
30
(
3
), pp.
231
295
.
30.
Raithby
,
G. D.
, and
Hollands
,
K. G. T.
,
1975
, “
A General Method of Obtaining Approximate Solutions to Laminar and Turbulent Free Convective Problems
,”
Adv. Heat Transfer
,
11
, pp.
265
315
.
31.
Churchill
,
S. W.
, and
Chu
,
H. H.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Horizontal Cylinder
,”
Int. J. Heat Mass Transfer
,
18
(
9
), pp.
1049
1053
.
32.
Kalogirou
,
S. A.
,
2014
,
Solar Energy Engineering Processes and Systems
,
2nd ed.
, Elsevier, New York.
33.
Saidur
,
R.
,
Leong
,
K. Y.
, and
Mohammad
,
H. A.
,
2011
, “
A Review on Applications and Challenges of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
15
(
3
), pp.
1646
1668
.
34.
Wendelin
,
T.
,
2003
, “Soltrace: A New Optical Modelling Tool for Concentrating Solar Optics,”
ASME
Paper No. ISEC2003-44090.
35.
NREL, 2017, “
Solar Radiation Data
,” Manipal, India, accessed June 01, 2017, https://maps.nrel.gov/nsrdb-viewer
36.
Ralph
,
L. W.
,
1993
,
Principles of Enhanced Heat Transfer
, 2nd ed.,
Wiley
, New York, p.
209
.
You do not currently have access to this content.