In this study, the exergetic performance of a flat plate solar collector (FPSC) setup with ZnO-based ethylene glycol (EG)/water nanofluid as a working fluid has been evaluated against that of EG/water. As a passive means to augment the rate of heat transfer, internally grooved tubes of two different pitches (e = 0.43 and e = 0.44) have been examined and compared against the performance of plain tube. The mass flow rate was fixed at 0.015 kg/s and the volume fraction of ZnO nanoparticles is ф = 0.02% v/v. The results indicate an enhancement in exergy efficiency of 44.61% when using the grooved tube (e = 0.44) against plain tube without the nanofluid and 39.17% when nanofluid is used. Using the nanofluid enhanced the exergy efficiency of the FPSC by a maximum of 73.81%. Maximum exergy efficiency obtained was 5.95% for grooved tube (e = 0.44) with nanofluid as working fluid and is in good agreement with previous literature. Exergy destruction/irreversibility due to temperature differences and heat flow within the system has been reported. Sun-collector temperature difference accounts for nearly 86–94% of the irreversibility. The results for thermal efficiency of this experimental setup have been published and summarized in this study for reference.

References

References
1.
Luminosu
,
I.
, and
Fara
,
L.
,
2005
, “
Determination of the Optimal Operation Mode of a Flat Solar Collector by Exergetic Analysis and Numerical Simulation
,”
Energy
,
30
(
5
), pp.
731
747
.
2.
Badescu
,
V.
,
2007
, “
Optimal Control of Flow in Solar Collectors for Maximum Exergy Extraction
,”
Int. J. Heat Mass Transfer
,
50
(
21–22
), pp.
4311
4322
.
3.
Farahat
,
S.
,
Sarhaddi
,
F.
, and
Ajam
,
H.
,
2009
, “
Exergetic Optimization of Flat Plate Solar Collectors
,”
Renewable Energy
,
34
(
4
), pp.
1169
1174
.
4.
Sobhnamayan
,
F.
,
Sarhaddi
,
F.
,
Alavi
,
M. A.
,
Farahat
,
S.
, and
Yazdanpanahi
,
J.
,
2014
, “
Optimization of a Solar Photovoltaic Thermal (PV/T) Water Collector Based on Exergy Concept
,”
Renewable Energy
,
68
, pp.
356
365
.
5.
Yazdanpanahi
,
J.
,
Sarhaddi
,
F.
, and
Mahdavi Adeli
,
M.
,
2015
, “
Experimental Investigation of Exergy Efficiency of a Solar Photovoltaic Thermal (PVT) Water Collector Based on Exergy Losses
,”
Sol. Energy
,
118
, pp.
197
208
.
6.
Yazdanpanahi
,
J.
, and
Sarhaddi
,
F.
,
2017
, “
Irreversibility Rates in a Solar Photovoltaic/Thermal Water Collector: An Experimental Study
,”
Heat Transfer Res.
,
48
(
8
), pp.
741
756
.
7.
Yousefi
,
T.
,
Veysi
,
F.
,
Shojaeizadeh
,
E.
, and
Zinadini
,
S.
,
2012
, “
An Experimental Investigation on the Effect of Al2O3–H2O Nanofluid on the Efficiency of Flat-Plate Solar Collectors
,”
Renewable Energy
,
39
(
1
), pp.
293
298
.
8.
Said
,
Z.
,
Saidur
,
R.
,
Sabiha
,
M. A.
,
Rahim
,
N. A.
, and
Anisur
,
M. R.
,
2015
, “
Thermophysical Properties of Single Wall Carbon Nanotubes and Its Effect on Exergy Efficiency of a Flat Plate Solar Collector
,”
Sol. Energy
,
115
, pp.
757
769
.
9.
Said
,
Z.
,
Saidur
,
R.
,
Sabiha
,
M. A.
,
Hepbasli
,
A.
, and
Rahim
,
N. A.
,
2016
, “
Energy and Exergy Efficiency of a Flat Plate Solar Collector Using pH Treated Al2O3 Nanofluid
,”
J. Cleaner Prod.
,
112
, pp.
3915
3926
.
10.
Said
,
Z.
,
Sabiha
,
M. A.
,
Saidur
,
R.
,
Hepbasli
,
A.
,
Rahim
,
N. A.
,
Mekhilef
,
S.
, and
Ward
,
T. A.
,
2015
, “
Performance Enhancement of a Flat Plate Solar Collector Using Titanium Dioxide Nanofluid and Polyethylene Glycol Dispersant
,”
J. Cleaner Prod.
,
92
, pp.
343
353
.
11.
Shojaeizadeh
,
E.
,
Veysi
,
F.
, and
Kamandi
,
A.
,
2015
, “
Exergy Efficiency Investigation and Optimization of an Al2O3–Water Nanofluid Based Flat-Plate Solar Collector
,”
Energy Build.
,
101
, pp.
12
23
.
12.
Shojaeizadeh
,
E.
, and
Veysi
,
F.
,
2016
, “
Development of a Correlation for Parameter Controlling Using Exergy Efficiency Optimization of an Al2O3/Water Nanofluid Based Flat-Plate Solar Collector
,”
Appl. Therm. Eng.
,
98
, pp.
1116
1129
.
13.
Said
,
Z.
,
Saidur
,
R.
, and
Rahim
,
N. A.
,
2016
, “
Energy and Exergy Analysis of a Flat Plate Solar Collector Using Different Sizes of Aluminium Oxide Based Nanofluid
,”
J. Cleaner Prod.
,
133
, pp.
518
530
.
14.
Verma
,
S. K.
,
Tiwari
,
A. K.
, and
Chauhan
,
D. S.
,
2016
, “
Performance Augmentation in Flat Plate Solar Collector Using MgO/Water Nanofluid
,”
Energy Convers. Manage.
,
124
, pp.
607
617
.
15.
Verma
,
S. K.
,
Tiwari
,
A. K.
, and
Chauhan
,
D. S.
,
2017
, “
Experimental Evaluation of Flat Plate Solar Collector Using Nanofluids
,”
Energy Convers. Manage.
,
134
, pp.
103
115
.
16.
Raja Sekhar
,
Y.
,
Sharma
,
K. V.
,
Thundil Karuppa Raj
,
R.
, and
Chiranjeevi
,
C.
,
2013
, “
Heat Transfer Enhancement With Al2O3 Nanofluids and Twisted Tapes in a Pipe for Solar Thermal Applications
,”
Procedia Eng.
,
64
, pp.
1474
1484
.
17.
Raja Sekhar
,
Y.
,
Sharma
,
K. V.
, and
Kamal
,
S.
,
2016
, “
Nanofluid Heat Transfer Under Mixed Convection Flow in a Tube for Solar Thermal Energy Applications
,”
Environ. Sci. Pollut. Res.
,
23
(
10
), pp.
9411
9477
.
18.
Sundar
,
L. S.
,
Singh
,
M. K.
,
Punnaiah
,
V.
, and
Sousa
,
A. C. M.
,
2018
, “
Experimental Investigation of Al2O3/Water Nanofluids on the Effectiveness of Solar Flat-Plate Collectors With and Without Twisted Tape Inserts
,”
Renewable Energy
,
119
, pp.
820
833
.
19.
Pavlovic
,
S.
,
Bellos
,
E.
, and
Loni
,
R.
,
2018
, “
Exergetic Investigation of a Solar Dish Collector With Smooth and Corrugated Spiral Absorber Operating With Various Nanofluids
,”
J. Cleaner Prod.
,
174
, pp.
1147
1160
.
20.
Niranjan
,
G.
,
Chilambarasan
,
L.
,
Raja Sekhar
,
Y.
, and
Vikranthreddy
,
D.
,
2017
, “
Performance Studies on Solar Collector With Grooved Absorber Tube Configuration Using Aqueous ZnO–Ethylene Glycol Nanofluids
,”
Appl. Sol. Energy
,
53
(
3
), pp.
215
221
.
21.
Vidhi,
Upadhyay
,
R.
,
Himanshu Khadloya
,
P.
,
Raja Sekhar
,
Y.
,
Sai Anoop Reedy
,
A.
, and
Reddy
,
B.
,
2017
, “
Experimental Studies on Solar Flat Plate Collector With Internally Grooved Tubes Using Aqueous Ethylene Glycol
,”
Appl. Sol. Energy
,
53
(
3
), pp.
222
228
.
22.
Sharma
,
S. K.
, and
Mital
,
S.
,
2016
, “
Preparation and Evaluation of Stable Nanofluids for Heat Transfer Application: A Review
,”
Exp. Therm. Fluid Sci.
,
79
, pp.
202
212
.
23.
Salavati Meibodi
,
S.
,
Kianifar
,
A.
,
Niazmand
,
H.
,
Mahian
,
O.
, and
Wongwises
,
S.
,
2015
, “
Experimental Investigation on the Thermal Efficiency and Performance Characteristics of a Flat Plate Solar Collector Using SiO2/EG-Water Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
65
, pp.
71
75
.
24.
Jafarkazemi
,
F.
, and
Ahmadifard
,
E.
,
2013
, “
Energetic and Exergetic Evaluation of Flat Plate Solar Collectors
,”
Renewable Energy
,
56
, pp.
55
63
.
25.
Madadi
,
V.
,
Tavakoli
,
T.
, and
Rahimi
,
A.
,
2014
, “
First and Second Thermodynamic Law Analyses Applied to a Solar Dish Collector
,”
J. Non-Equilib. Thermodyn.
,
39
(
4
), pp.
183
197
.
26.
Petela
,
R.
,
2003
, “
Exergy of Undiluted Thermal Radiation
,”
Sol. Energy
,
74
(
6
), pp.
469
488
.
27.
Petla
,
R.
,
1964
, “
Exergy of Heat Radiation
,”
ASME J. Heat Transfer
,
86
(
2
), pp.
187
192
.
28.
Suzuki
,
A.
,
1988
, “
General Theory of Exergy Balance Analysis and Application to Solar Collectors
,”
Energy
,
13
(
2
), pp.
153
160
.
29.
Mahian
,
O.
,
Kianifar
,
A.
,
Sahin
,
A. Z.
, and
Wongwises
,
S.
,
2014
, “
Entropy Generation During Al2O3/Water Nanofluid Flow in a Solar Collector: Effects of Tube Roughness, Nanoparticle Size, and Different Thermophysical Models
,”
Int. J. Heat Mass Transfer
,
78
, pp.
64
75
.
30.
Jafari
,
I.
,
Ershadi
,
A.
,
Najafpour
,
E.
, and
Hedayat
,
N.
,
2011
, “
Energy and Exergy Analysis of Dual Purpose Solar Collector
,”
World Acad. Sci. Eng. Technol.
,
5
(9), pp.
259
261
.
31.
Ge
,
Z.
,
Wang
,
H.
,
Wang
,
H.
,
Zhang
,
S.
, and
Guan
,
X.
,
2014
, “
Exergy Analysis of Flat Plate Solar Collectors
,”
Entropy
,
16
(
5
), pp.
2549
2567
.
You do not currently have access to this content.