A macro rectangular-channel flat-plate solar thermal collector is designed and examined in this study. It consists of a set of adjacent macro rectangular channels formed between the upper, lower, and fin-parts of an absorber plate, thus, overcoming the necessary welding between the absorber plate and riser tubes used in conventional flat-plate collectors. An optimization model is suggested and solved to obtain an optimal design of the proposed collector. After that, a detailed dynamic mathematical model of this collector is presented and numerical simulation is carried out using matlab. Furthermore, a comparison with a conventional sheet-and-tube solar thermal collector is investigated and parametric analysis is conducted under both steady-state and dynamic conditions. The results reveal that the designed collector yields an enhancement of 8% for integrated thermal efficiency under transient regime and an average improvement of 12% for steady-state efficiency when compared with the conventional collector. In addition, the influence of the variation of different parameters, such as the mass flow rate of the heat transfer fluid (HTF), the thickness of different parts of the absorber plate, and the number of channels, on the performance of the proposed collector is presented. From an economical perspective, the cost of materials composing the new collector is less than that of materials composing the conventional one.

References

References
1.
Stillman
,
D.
, and
Green
,
J.
,
2017
, “
What Is Climate Change?
,” National Aeronautics and Space Administration, National Aeronautics and Space Administration, Washington, DC accessed May, 10, 2018, https://www.nasa.gov/audience/forstudents/k-4/stories/nasa-knows/what-is-climate-change-k4.html
2.
Weiss
,
W.
,
Spörk-Dür
,
M.
, and
Mauthner
,
F.
,
2017
, “
Solar Heat Worldwide—Global Market Development and Trends in 2016 | Detailed Market Figures 2015
,” AEE–Institute for Sustainable Technologies, Gleisdorf, Austria.
3.
Suman
,
S.
,
Khan
,
M. K.
, and
Pathak
,
M.
,
2015
, “
Performance Enhancement of Solar Collectors—A Review
,”
Renewable Sustainable Energy Rev.
,
49
, pp.
192
210
.
4.
Jaisankar
,
S.
,
Radhakrishnan
,
T. K.
, and
Sheeba
,
K. N.
,
2009
, “
Experimental Studies on Heat Transfer and Friction Factor Characteristics of Thermosyphon Solar Water Heater System Fitted With Spacer at the Trailing Edge of Twisted Tapes
,”
Appl. Therm. Eng.
,
29
(
5–6
), pp.
1224
1231
.
5.
Jaisankar
,
S.
,
Radhakrishnan
,
T. K.
, and
Sheeba
,
K. N.
,
2009
, “
Experimental Studies on Heat Transfer and Friction Factor Characteristics of Forced Circulation Solar Water Heater System Fitted With Helical Twisted Tapes
,”
Sol. Energy
,
83
(
11
), pp.
1943
1952
.
6.
Jaisankar
,
S.
,
Radhakrishnan
,
T. K.
, and
Sheeba
,
K. N.
,
2011
, “
Experimental Studies on Heat Transfer and Thermal Performance Characteristics of Thermosyphon Solar Water Heating System With Helical and Left-Right Twisted Tapes
,”
Energy Convers. Manage.
,
52
(
5
), pp.
2048
2055
.
7.
Promvonge
,
P.
,
Pethkool
,
S.
,
Pimsarn
,
M.
, and
Thianpong
,
C.
,
2012
, “
Heat Transfer Augmentation in a Helical-Ribbed Tube With Double Twisted Tape Inserts
,”
Int. Commun. Heat Mass Transfer
,
39
(
7
), pp.
953
959
.
8.
Garcia
,
A.
,
Martin
,
R. H.
, and
Pérez-Garcia
,
J.
,
2013
, “
Experimental Study of Heat Transfer Enhancement in a Flat-Plate Solar Water Collector With Wire-Coil Inserts
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
461
468
.
9.
Nanan
,
K.
,
Thianpong
,
C.
,
Promvonge
,
P.
, and
Eiamsa-ard
,
S.
,
2014
, “
Investigation of Heat Transfer Enhancement by Perforated Helical Twisted-Tapes
,”
Int. Commun. Heat Mass Transfer
,
52
, pp.
106
112
.
10.
Sandhu
,
G.
,
Siddiqui
,
K.
, and
Garcia
,
A.
,
2014
, “
Experimental Study on the Combined Effects of Inclination Angle and Insert Devices on the Performance of a Flat-Plate Solar Collector
,”
Int. J. Heat Mass Transfer
,
71
, pp.
251
263
.
11.
Chokphoemphun
,
S.
,
Pimsarn
,
M.
,
Thianpong
,
C.
, and
Promvonge
,
P.
,
2015
, “
Heat Transfer Augmentation in a Circular Tube With Winglet Vortex Generators
,”
Chin. J. Chem. Eng.
,
23
(
4
), pp.
605
614
.
12.
García
,
A.
,
Herrero-Martin
,
R.
,
Solano
,
J. P.
, and
Pérez-García
,
J.
,
2018
, “
The Role of Insert Devices on Enhancing Heat Transfer in a Flat-Plate Solar Water Collector
,”
Appl. Therm. Eng.
,
132
, pp.
479
489
.
13.
Balaji
,
K.
,
Iniyan
,
S.
, and
Muthusamyswami
,
V.
,
2017
, “
Experimental Investigation on Heat Transfer and Pumping Power of Forced Circulation Flat Plate Solar Collector Using Heat Transfer Enhancer in Absorber Tube
,”
Appl. Therm. Eng.
,
112
, pp.
237
247
.
14.
Ismail
,
K. A. R.
, and
Abogderah
,
M. M.
,
1998
, “
Performance of a Heat Pipe Solar Collector
,”
ASME J. Sol. Energy Eng.
,
120
(
1
), pp.
51
59
.
15.
Esen
,
M.
, and
Esen
,
H.
,
2005
, “
Experimental Investigation of a Two-Phase Closed Thermosyphon Solar Water Heater
,”
Sol. Energy
,
79
(
5
), pp.
459
468
.
16.
Martinopoulos
,
G.
,
Ikonomopoulos
,
A.
, and
Tsilingiridis
,
G.
,
2016
, “
Initial Evaluation of a Phase Change Solar Collector for Desalination Applications
,”
Desalination
,
399
, pp.
165
170
.
17.
Zhang
,
D.
,
Tao
,
H.
,
Wang
,
M.
,
Sun
,
Z. C.
, and
Jiang
,
C.
,
2017
, “
Numerical Simulation Investigation on Thermal Performance of Heat Pipe Flat-Plate Solar Collector
,”
Appl. Therm. Eng.
,
118
, pp.
113
126
.
18.
Ma
,
L.
,
Shang
,
L.
,
Zhong
,
D.
, and
Ji
,
Z.
,
2017
, “
Experimental Investigation of a Two-Phase Closed Thermosyphon Charged With Hydrocarbon and Freon Refrigerants
,”
Appl. Energy
,
207
, pp.
665
673
.
19.
Colangelo
,
G.
,
Favale
,
E.
,
Miglietta
,
P.
, and
de Risi
,
A.
,
2016
, “
Innovation in Flat Solar Thermal Collectors: A Review of the Last Ten Years Experimental Results
,”
Renewable Sustainable Energy Rev.
,
57
, pp.
1141
1159
.
20.
Ghoneim
,
A. A.
,
2005
, “
Performance Optimization of Solar Collector Equipped With Different Arrangements of Square-Celled Honeycomb
,”
Int. J. Therm. Sci.
,
44
(
1
), pp.
95
105
.
21.
Fan
,
J.
,
Shah
,
L. J.
, and
Furbo
,
S.
,
2007
, “
Flow Distribution in a Solar Collector Panel With Horizontally Inclined Absorber Strips
,”
Sol. Energy
,
81
(
12
), pp.
1501
1511
.
22.
Varol
,
Y.
, and
Oztop
,
H. F.
,
2008
, “
A Comparative Numerical Study on Natural Convection in Inclined Wavy and Flat-Plate Solar Collectors
,”
Building Environ.
,
43
(
9
), pp.
1535
1544
.
23.
Chong
,
K. K.
,
Chay
,
K. G.
, and
Chin
,
K. H.
,
2012
, “
Study of a Solar Water Heater Using Stationary V-Trough Collector
,”
Renewable Energy
,
39
(
1
), pp.
207
215
.
24.
Fernández
,
A.
, and
Dieste
,
J. A.
,
2013
, “
Low and Medium Temperature Solar Thermal Collector Based in Innovative Materials and Improved Heat Exchange Performance
,”
Energy Convers. Manage.
,
75
, pp.
118
129
.
25.
Jesús Ángel
,
M.
,
Juan Manuel
,
O. R.
,
Omar
,
J. S.
,
Marco Antonio
,
Z. A.
, and
Armando
,
E. O.
,
2013
, “
Analysis of Flow and Heat Transfer in a Flat Solar Collector With Rectangular and Cylindrical Geometry Using CFD
,”
Ing. Invest. Tecnol.
,”
14
(
4
), pp.
553
561
.
26.
Saedodin
,
S.
,
Zamzamian
,
S. A. H.
,
Eshagh Nimvari
,
M.
,
Wongwises
,
S.
, and
Javaniyan Jouybari
,
H.
,
2017
, “
Performance Evaluation of a Flat-Plate Solar Collector Filled With Porous Metal Foam: Experimental and Numerical Analysis
,”
Energy Convers. Manage.
,
153
, pp.
278
287
.
27.
Mintsa Do Ango
,
A. C.
,
Medale
,
M.
, and
Abid
,
C.
,
2013
, “
Optimization of the Design of a Polymer Flat Plate Solar Collector
,”
Sol. Energy
,
87
, pp.
64
75
.
28.
Chen
,
G.
,
Doroshenko
,
A.
,
Koltun
,
P.
, and
Shestopalov
,
K.
,
2015
, “
Comparative Field Experimental Investigations of Different Flat Plate Solar Collectors
,”
Sol. Energy
,
115
, pp.
577
588
.
29.
Martinopoulos
,
G.
,
Missirlis
,
D.
,
Tsilingiridis
,
G.
,
Yakinthos
,
K.
, and
Kyriakis
,
N.
,
2010
, “
CFD Modeling of a Polymer Solar Collector
,”
Renewable Energy
,
35
(
7
), pp.
1499
1508
.
30.
Missirlis
,
D.
,
Martinopoulos
,
G.
,
Tsilingiridis
,
G.
,
Yakinthos
,
K.
, and
Kyriakis
,
N.
,
2014
, “
Investigation of the Heat Transfer Behaviour of a Polymer Solar Collector for Different Manifold Configurations
,”
Renewable Energy
,
68
, pp.
715
723
.
31.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
,
2003
, “
Evolution of Microchannel Flow Passages–Thermohydraulic Performance and Fabrication Technology
,”
Heat Transfer Eng.
,
24
(
1
), pp.
3
17
.
32.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2006
,
Solar Engineering of Thermal Processes
,
Wiley
,
New York
.
33.
Hobbi
,
A.
, and
Siddiqui
,
K.
,
2009
, “
Optimal Design of a Forced Circulation Solar Water Heating System for a Residential Unit in Cold Climate Using TRNSYS
,”
Sol. Energy
,
83
(
5
), pp.
700
714
.
34.
Al-Ajlan
,
S. A.
,
Al Faris
,
H.
, and
Khonkar
,
H.
,
2003
, “
A Simulation Modeling for Optimization of Flat Plate Collector Design in Riyadh, Saudi Arabia
,”
Renewable Energy
,
28
(
9
), pp.
1325
1339
.
35.
Remund
,
J.
,
Muller
,
S.
,
Kunz
,
S.
, and
Schilter
,
C.
,
2012
, “
Meteonorm, Global Meteorological Database, Version 7
,” METEOTEST, Bern, Switzerland.
36.
Ibrahim
,
O.
,
Fardoun
,
F.
,
Younes
,
R.
, and
Louahlia-Gualous
,
H.
,
2014
, “
Air Source Heat Pump Water Heater: Dynamic Modeling, Optimal Energy Management and Mini-Tubes Condensers
,”
Energy
,
64
, pp.
1102
1116
.
37.
Çengel
,
Y. A.
,
2002
,
Heat Transfer: A Practical Approach
,
McGraw-Hill
,
New York
.
38.
Shimoda
,
Y.
,
Okamura
,
T.
,
Yamaguchi
,
Y.
,
Yamaguchi
,
Y.
,
Taniguchi
,
A.
, and
Morikawa
,
T.
,
2010
, “
City-Level Energy and CO2 Reduction Effect by Introducing New Residential Water Heaters
,”
Energy
,
35
(
12
), pp.
4880
4891
.
39.
Ibrahim
,
O.
,
Fardoun
,
F.
,
Younes
,
R.
, and
Louahlia-Gualous
,
H.
,
2014
, “
Optimal Management Proposal for Hybrid Water Heating System
,”
Energy Build.
,
75
, pp.
342
357
.
40.
Ibrahim
,
O.
,
Fardoun
,
F.
,
Younes
,
R.
, and
Ibrahim
,
M.
,
2018
, “
Improved Model for Calculating Instantaneous Efficiency of Flat-Plate Solar Thermal Collector
,”
ASME J. Heat Transfer
,
140
(
6
), p.
062801
.
You do not currently have access to this content.