Radiation absorption is investigated in a particle curtain formed in a solar free-falling particle receiver. An Eulerian–Eulerian granular two-phase model is used to solve the two-dimensional mass and momentum equations by employing computational fluid dynamics (CFD) to find particle distribution in the curtain. The radiative transfer equation (RTE) is subsequently solved by the Monte Carlo (MC) ray-tracing technique to obtain the radiation intensity distribution in the particle curtain. The predicted opacity is validated with the experimental results reported in the literature for 280 and 697 μm sintered bauxite particles. The particle curtain is found to absorb the solar radiation most efficiently at flowrates upper-bounded at approximately 20 kg s−1 m−1. In comparison, 280 μm particles have higher average absorptance than 697 μm particles (due to higher radiation extinction characteristics) at similar particle flowrates. However, as the absorption of solar radiation becomes more efficient, nonuniform radiation absorption across the particle curtain and hydrodynamic instability in the receiver are more probable.

References

References
1.
Li
,
L.
,
Coventry
,
J.
,
Bader
,
R.
,
Pye
,
J.
, and
Lipiński
,
W.
,
2016
, “
Optics of Solar Central Receiver Systems: A Review
,”
Opt. Express
,
24
(
14
), pp.
A985
A1007
.
2.
Ho
,
C. K.
, and
Iverson
,
B. D.
,
2014
, “
Review of High-Temperature Central Receiver Designs for Concentrating Solar Power
,”
Renewable Sustainable Energy Rev.
,
29
, pp.
835
846
.
3.
Meier
,
A.
,
1999
, “
A Predictive CFD Model for a Falling Particle Receiver Reactor Exposed to Concentrated Sunlight
,”
Chem. Eng. Sci.
,
54
(
13–14
), pp.
2899
2905
.
4.
Rightley
,
M. J.
,
Matthews
,
L. K.
, and
Mulholland
,
G. P.
,
1992
, “
Experimental Characterization of the Heat-Transfer in a Free-Falling-Particle Receiver
,”
Sol. Energy
,
48
(
6
), pp.
363
374
.
5.
Bai
,
F.
,
Zhang
,
Y.
,
Zhang
,
X.
,
Wang
,
F.
,
Wang
,
Y.
, and
Wang
,
Z.
,
2014
, “
Thermal Performance of a Quartz Tube Solid Particle Air Receiver
,”
Energy Procedia
,
49
, pp.
284
294
.
6.
Gobereit
,
B.
,
Amsbeck
,
L.
,
Buck
,
R.
,
Pitz-Paal
,
R.
,
Roeger
,
M.
, and
Mueller-Steinhagen
,
H.
,
2015
, “
Assessment of a Falling Solid Particle Receiver With Numerical Simulation
,”
Sol. Energy
,
115
, pp.
505
517
.
7.
Ho
,
C. K.
,
2016
, “
A Review of High-Temperature Particle Receivers for Concentrating Solar Power
,”
Appl. Therm. Eng.
,
109
(Pt. B), pp.
958
969
.
8.
Stahl
,
K. A.
,
Griffin
,
J. W.
,
Matson
,
B.
, and
Pettit
,
R. B.
,
1986
, “
Optical Characterisation of Solid Particle Solar Central Receiver Materials
,” Sandia Laboratories, Richland, WA, Report No. SAND85-0064.
9.
Hruby
,
J. M.
,
Steele
,
B. R.
, and
Burolla, V.P.
, 1984, “
Solid Particle Receiver Experiments: Radiant Heat Test
,” Sandia National Laboratories, Livermore, CA, Report No. SAND84-8251.
10.
Falcone
,
P. K.
,
Noring
,
J. E.
, and
Hruby
,
J. M.
, 1985, “
Assessment of a Solid Particle Receiver for a High Temperature Solar Central Receiver System
,” Sandia National Laboratories, Livermore, CA, Report No. SAND1985-8208.
11.
Siegel
,
N. P.
,
Ho
,
C. K.
,
Khalsa
,
S. S.
, and
Kolb
,
G. J.
,
2010
, “
Development and Evaluation of a Prototype Solid Particle Receiver: On-Sun Testing and Model Validation
,”
ASME J. Sol. Energy Eng.
,
132
(
2
), p. 021008.
12.
Ho
,
C.
,
Christian
,
J.
,
Gill
,
D.
,
Moya
,
A.
,
Jeter
,
S.
,
Abdel-Khalik
,
S.
,
Sadowski
,
D.
,
Siegel
,
N.
,
Al-Ansary
,
H.
,
Amsbeck
,
L.
,
Gobereit
,
B.
, and
Buck
,
R.
,
2014
, “
Technology Advancements for Next Generation Falling Particle Receivers
,”
Solarpaces 2013 International Conference
, Las Vegas, NV, Sept. 17–20, pp.
398
407
.
13.
Siegel
,
N.
,
Gross
,
M.
,
Ho
,
C.
,
Phan
,
T.
, and
Yuan
,
J.
,
2014
, “
Physical Properties of Solid Particle Thermal Energy Storage Media for Concentrating Solar Power Applications
,”
Solarpaces 2013 International Conference
, Las Vegas, NV, Sept. 17–20, pp.
1015
1023
.
14.
Roeger
,
M.
,
Amsbeck
,
L.
,
Gobereit
,
B.
, and
Buck
,
R.
,
2011
, “
Face-down Solid Particle Receiver Using Recirculation
,”
ASME J. Sol. Energy Eng.
,
133
(
3
), p. 031009.
15.
Chinnici
,
A.
,
Arjomandi
,
M.
,
Tian
,
Z. F.
,
Lu
,
Z.
, and
Nathan
,
G. J.
,
2015
, “
A Novel Solar Expanding-Vortex Particle Reactor: Influence of Vortex Structure on Particle Residence Times and Trajectories
,”
Sol. Energy
,
122
, pp.
58
75
.
16.
Taussig, R. T.
, 1984 “
Aerowindows for Center Solar Receivers
,” Winter Annual Meeting, New Orleans, LA, Dec. 9–14, pp. 1–12.
17.
Siegel
,
N. P.
,
Kolb
,
G. J.
,
Kim
,
K.
, and
Rangaswamy
,
V. B.
,
2007
, “
Solid Particle Receiver Flow Characterisation Studies
,”
ASME
Paper No. ES2007-36118.
18.
Tan
,
T.
,
Chen
,
Y.
,
Chen
,
Z.
,
Siegel
,
N.
, and
Kolb
,
G. J.
,
2009
, “
Wind Effect on the Performance of Solid Particle Solar Receivers With and Without the Protection of an Aerowindow
,”
Sol. Energy
,
83
(
10
), pp.
1815
1827
.
19.
Ho
,
C. K.
,
Christian
,
J. M.
,
Romano
,
D.
,
Yellowhair
,
J.
,
Siegel
,
N.
,
Savoldi
,
L.
, and
Zanino
,
R.
,
2016
, “
Characterization of Particle Flow in a Free-Falling Solar Particle Receiver
,”
ASME J. Sol. Energy Eng.
,
139
(
2
), p.
021011
.
20.
Kim
,
K.
,
Siegel
,
N.
,
Kolb
,
G.
,
Rangaswamy
,
V.
, and
Moujaes
,
S. F.
,
2009
, “
A Study of Solid Particle Flow Characterization in Solar Particle Receiver
,”
Sol. Energy
,
83
(
10
), pp.
1784
1793
.
21.
Gidaspow
,
D.
,
1994
,
Multiphase Flow and Fluidisation
,
Academic Press
,
San Diego, CA
.
22.
Kumar
,
A.
,
Hodgson
,
P.
,
Fabijanic
,
D.
, and
Gao
,
W.
,
2012
, “
Numerical Solution of Gas–Solid Flow in Fluidised Bed at Sub-Atmospheric Pressures
,”
Adv. Powder Technol.
,
23
(
4
), pp.
485
492
.
23.
Lin
,
P.
,
Zhang
,
S.
,
Qi
,
J.
,
Xing
,
Y. M.
, and
Yang
,
L.
,
2015
, “
Numerical Study of Free-Fall Arches in Hopper Flows
,”
Phys. A: Stat. Mech. Appl.
,
417
, pp.
29
40
.
24.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Progress
,
48
(
2
), pp.
89
94
.http://dns2.asia.edu.tw/~ysho/YSHO-English/1000%20CE/PDF/Che%20Eng%20Pro48,%2089.pdf
25.
Wen
,
C. Y.
, and
Yu
,
Y. H.
,
1966
,
Mechanics of Fluidisation
(Chemical Engineering Progress Symposium Series, Vol.
62
), American Institute of Chemical Engineers, New York, p.
100
.
26.
Shiller, L.
, and
Naumann, Z.
, 1935, “
A Drag Coefficient Correlation
,” Ver. Deutsch. Ing.,
77
, pp. 318–320.
27.
Modest
,
M. F.
,
2013
,
Radiative Heat Transfer
, Academic Press, Boston, MA.
28.
Ferziger
,
J. H.
, and
Peric
,
M.
,
2001
,
Computational Methods for Fluid Dynamics
,
Springer
,
Berlin
.
29.
ANSYS,
2016
, “
ANSYS Academic Research, Release 16
,” ANSYS Inc., Canonsburg, PA.
30.
Farmer
,
J. T.
, and
Howell
,
J. R.
,
1998
, “
Comparison of Monte Carlo Strategies for Radiative Transfer in Participating Media
,”
Advances in Heat Transfer
,
James P.
Hartnett
,
F. I.
Thomas
, Jr.
,
I. C.
Young
, and
A. G.
George
, eds.,
Elsevier
, Amsterdam, The Netherlands, pp.
333
429
.
31.
Darton
,
R. C.
,
1976
, “
The Structure and Dispersion of Jets of Solid Particles Falling from a Hopper
,”
Powder Technol.
,
13
(
2
), pp.
241
250
.
32.
Goldschmidt
,
M. J. V.
,
Beetstra
,
R.
, and
Kuipers
,
J. A. M.
,
2004
, “
Hydrodynamic Modelling of Dense Gas-Fluidised Beds: Comparison and Validation of 3D Discrete Particle and Continuum Models
,”
Powder Technol.
,
142
(
1
), pp.
23
47
.
33.
Lu
,
X.
,
Boyce
,
C. M.
,
Scott
,
S. A.
,
Dennis
,
J. S.
, and
Holland
,
D. J.
,
2015
, “
Investigation of Two-Fluid Models of Fluidisation Using Magnetic Resonance and Discrete Element Simulations
,”
Procedia Eng.
,
102
, pp.
1436
1445
.
34.
Yang
,
L.
,
Padding
,
J. T.
,
Buist
,
K. A.
, and
Kuipers
,
J. A. M.
,
2017
, “
Three-Dimensional Fluidized Beds With Rough Spheres: Validation of a Two Fluid Model by Magnetic Particle Tracking and Discrete Particle Simulations
,”
Chem. Eng. Sci.
,
174
, pp.
238
258
.
You do not currently have access to this content.