In this work, the exergy analysis of two configurations of hybrid solar–sugarcane cogeneration power plant is proposed in order to evaluate the overall efficiency enhancement of the cycle. Solar thermal energy was coupled to a sugarcane cogeneration power plant localized on the tropical region of Brazil, in order to preheat the feeding water supplied to the steam generators and to reduce the fuel consumption during the sugarcane-harvesting season in order to stock the unused fuel for its use during the off-season. The exergy analysis of the cycle was proposed based on a thermodynamic model, which considered real operational states, and allowed to quantify the main parameters of performance, such as the solar-to-electricity (STE) efficiency, the power generation increasing, the percentage of fuel saved, and the exergy destruction rates of the equipment. The results showed that, under design conditions, almost 10% of fuel was saved, and the overall exergy destruction decreased 11% approximately. Additionally, as a result of the hourly analysis of the annual operation, it was found that the power plant operated 331 extra hours, 8.50 GWh of electricity were generated, and due to this fact, it has attained economic benefits for the operation of the sugarcane cogeneration power plant.

References

References
1.
IEA
,
2017
, “
Key World Energy Statistics
,” International Energy Agency, Paris, France.
2.
Pons
,
M.
,
2012
, “
Exergy Analysis of Solar Collectors, From Incident Radiation to Dissipation
,”
Renewable Energy
,
47
, pp.
194
202
.
3.
Timilsina
,
G. R.
,
Kurdgelashvili
,
L.
, and
Narbel
,
P. A.
,
2012
, “
Solar Energy: Markets, Economics and Policies
,”
Renewable Sustainable Energy Rev.
,
16
(
1
), pp.
449
465
.
4.
Desideri
,
U.
,
Zepparelli
,
F.
,
Morettini
,
V.
, and
Garroni
,
E.
,
2013
, “
Comparative Analysis of Concentrating Solar Power and Photovoltaic Technologies: Technical and Environmental Evaluations
,”
Appl. Energy
,
102
, pp.
765
784
.
5.
Tian
,
Y.
, and
Zhao
,
C. Y.
,
2013
, “
A Review of Solar Collectors and Thermal Energy Storage in Solar Thermal Applications
,”
Appl. Energy
,
104
, pp.
538
553
.
6.
Wang
,
Y.
,
Xu
,
J.
,
Chen
,
Z.
,
Cao
,
H.
, and
Zhang
,
B.
,
2017
, “
Technical and Economical Optimization for a Typical Solar Hybrid Coal-Fired Power Plant in China
,”
Appl. Therm. Eng.
,
115
, pp.
549
557
.
7.
Wu
,
J.
,
Hou
,
H.
, and
Yang
,
Y.
,
2016
, “
Annual Economic Performance of a Solar-Aided 600 MW Coal-Fired Power Generation System Under Different Tracking Modes, Aperture Areas, and Storage Capacities
,”
Appl. Therm. Eng.
,
104
, pp.
319
332
.
8.
Zhou
,
L.
,
Li
,
Y.
,
Hu
,
E.
,
Qin
,
J.
, and
Yang
,
Y.
,
2015
, “
Comparison in Net Solar Efficiency Between the Use of Concentrating and Non-Concentrating Solar Collectors in Solar Aided Power Generation Systems
,”
Appl. Therm. Eng.
,
75
, pp.
685
691
.
9.
Sait
,
H. H.
,
Martinez-Val
,
J. M.
,
Abbas
,
R.
, and
Munoz-Anton
,
J.
,
2015
, “
Fresnel-Based Modular Solar Fields for Performance/Cost Optimization in Solar Thermal Power Plants: A Comparison With Parabolic Trough Collectors
,”
Appl. Energy
,
141
, pp.
175
189
.
10.
Reddy
,
K. S.
, and
Kumar
,
K. R.
,
2012
, “
Solar Collector Field Design and Viability Analysis of Stand-Alone Parabolic Trough Power Plants for Indian Conditions
,”
Energy Sustainable Dev.
,
16
(
4
), pp.
456
470
.
11.
Peterseim
,
J. H.
,
White
,
S.
,
Tadros
,
A.
, and
Hellwig
,
U.
,
2014
, “
Concentrating Solar Power Hybrid Plants—Enabling Cost Effective Synergies
,”
Renewable Energy
,
67
, pp.
178
185
.
12.
Soltani
,
R.
,
Mohammadzadeh Keleshtery
,
P.
,
Vahdati
,
M.
,
KhoshgoftarManesh
,
M. H.
,
Rosen
,
M. A.
, and
Amidpour
,
M.
,
2014
, “
Multi-Objective Optimization of a Solar-Hybrid Cogeneration Cycle: Application to CGAM Problem
,”
Energy Convers. Manage.
,
81
, pp.
60
71
.
13.
Hu
,
E.
,
Yang
,
Y.
,
Nishimura
,
A.
,
Yilmaz
,
F.
, and
Kouzani
,
A.
,
2010
, “
Solar Thermal Aided Power Generation
,”
Appl. Energy
,
87
(
9
), pp.
2881
2885
.
14.
Hou
,
H.
,
Xu
,
Z.
, and
Yang
,
Y.
,
2016
, “
An Evaluation Method of Solar Contribution in a Solar Aided Power Generation (SAPG) System Based on Exergy Analysis
,”
Appl. Energy
,
182
, pp.
1
8
.
15.
Hou
,
H.
,
Yang
,
Y.
,
Hu
,
E.
,
Song
,
J.
,
Dong
,
C.
, and
Mao
,
J.
,
2011
, “
Evaluation of Solar Aided Biomass Power Generation Systems With Parabolic Trough Field
,”
Sci. China Technol. Sci.
,
54
(
6
), pp.
1455
1461
.
16.
Hou
,
H.
,
Wu
,
J.
,
Yang
,
Y.
,
Hu
,
E.
, and
Chen
,
S.
,
2015
, “
Performance of a Solar Aided Power Plant in Fuel Saving Mode
,”
Appl. Energy
,
160
, pp.
873
881
.
17.
Zhong
,
W.
,
Chen
,
X.
,
Zhou
,
Y.
,
Wu
,
Y.
, and
López
,
C.
,
2017
, “
Optimization of a Solar Aided Coal-Fired Combined Heat and Power Plant Based on Changeable Integrate Mode Under Different Solar Irradiance
,”
Sol. Energy
,
150
, pp.
437
446
.
18.
Wu
,
J.
,
Hou
,
H.
, and
Yang
,
Y.
,
2016
, “
Comparison Analysis for TES System in Solar-Aided 600 MW Coal-Fired Power Generation System and Solar-Alone Power Generation System
,”
ASME
Paper No. ES2016-59491.
19.
Sheu
,
E. J.
,
Mitsos
,
A.
,
Eter
,
A. A.
,
Mokheimer
,
E. M. A.
,
Habib
,
M. A.
, and
Al-Qutub
,
A.
,
2012
, “
A Review of Hybrid Solar–Fossil Fuel Power Generation Systems and Performance Metrics
,”
ASME J. Sol. Energy Eng.
,
134
(
4
), p.
041006
.
20.
Suresh
,
M. V. J. J.
,
Reddy
,
K. S.
, and
Kolar
,
A. K.
,
2010
, “
4-E (Energy, Exergy, Environment, and Economic) Analysis of Solar Thermal Aided Coal-Fired Power Plants
,”
Energy Sustainable Dev.
,
14
(
4
), pp.
267
279
.
21.
Hong-juan
,
H.
,
Zhen-yue
,
Y.
,
Yong-ping
,
Y.
,
Si
,
C.
,
Na
,
L.
, and
Junjie
,
W.
,
2013
, “
Performance Evaluation of Solar Aided Feedwater Heating of Coal-Fired Power Generation (SAFHCPG) System Under Different Operating Conditions
,”
Appl. Energy
,
112
, pp.
710
718
.
22.
Giuliano
,
S.
,
Buck
,
R.
, and
Eguiguren
,
S.
,
2011
, “
Analysis of Solar-Thermal Power Plants With Thermal Energy Storage and Solar-Hybrid Operation Strategy
,”
ASME J. Sol. Energy Eng.
,
133
(
3
), p.
031007
.
23.
Adibhatla
,
S.
, and
Kaushik
,
S. C.
,
2017
, “
Energy, Exergy, Economic and Environmental (4E) Analyses of a Conceptual Solar Aided Coal Fired 500MWe Thermal Power Plant With Thermal Energy Storage Option
,”
Sustainable Energy Technol. Assess.
,
21
, pp.
89
99
.
24.
Aljundi
,
I. H.
,
2009
, “
Energy and Exergy Analysis of a Steam Power Plant in Jordan
,”
Appl. Therm. Eng.
,
29
(
2–3
), pp.
324
328
.
25.
Adibhatla
,
S.
, and
Kaushik
,
S. C.
,
2017
, “
Exergy and Thermoeconomic Analyses of 500 MWe Sub Critical Thermal Power Plant With Solar Aided Feed Water Heating
,”
Appl. Therm. Eng.
,
123
, pp.
340
352
.
26.
Peng
,
S.
,
Wang
,
Z.
,
Hong
,
H.
,
Xu
,
D.
, and
Jin
,
H.
,
2014
, “
Exergy Evaluation of a Typical 330 MW Solar-Hybrid Coal-Fired Power Plant in China
,”
Energy Convers. Manage.
,
85
, pp.
848
855
.
27.
Zhao
,
Y.
,
Hong
,
H.
, and
Jin
,
H.
,
2013
, “
Proposal of a Solar-Coal Power Plant on Off-Design Operation
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), p.
031005
.
28.
Deng
,
S.
,
2013
, “
Hybrid Solar and Coal-Fired Steam Power Plant Based on Air Preheating
,”
ASME J. Sol. Energy Eng.
,
136
(
2
), p.
021012
.
29.
Reddy
,
V. S.
,
Kaushik
,
S. C.
, and
Tyagi
,
S. K.
,
2012
, “
Exergetic Analysis and Performance Evaluation of Parabolic Trough Concentrating Solar Thermal Power Plant (PTCSTPP)
,”
Energy
,
39
(
1
), pp.
258
273
.
30.
Burin
,
E. K.
,
Buranello
,
L.
,
Lo Giudice
,
P.
,
Vogel
,
T.
,
Görner
,
K.
, and
Bazzo
,
E.
,
2015
, “
Boosting Power Output of a Sugarcane Bagasse Cogeneration Plant Using Parabolic Trough Collectors in a Feedwater Heating Scheme
,”
Appl. Energy
,
154
, pp.
232
241
.
31.
Peterseim
,
J. H.
,
Hellwig
,
U.
,
Tadros
,
A.
, and
White
,
S.
,
2014
, “
Hybridisation Optimization of Concentrating Solar Thermal and Biomass Power Generation Facilities
,”
Sol. Energy
,
99
, pp.
203
214
.
32.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M.
,
1996
,
Thermal Desing and Optimization
,
Wiley
,
New York
.
33.
Szargut
,
J.
,
Morris
,
D.
, and
Steward
,
F.
,
1988
,
Exergy Analysis of Thermal, Chemical, and Metallurgical Processes
,
Hemisphere Publishing
,
New York
.
34.
NOVATEC-SOLAR
,
2009
, “
NOVA-1
,” NOVATEC, Karlsruhe, Germany.
35.
Petela
,
R.
,
1964
, “
Exergy of Heat Radiation
,”
ASME J. Heat Transfer
,
86
(
2
), p.
187
.
36.
Kalogirou
,
S. A.
,
2004
, “
Solar Thermal Collectors and Applications
,”
Prog. Energy Combust. Sci.
,
30
(
3
), pp.
231
295
.
37.
Lozano
,
M. A.
,
Serra
,
L. M.
,
Mancini
,
C.
, and
Verda
,
V.
,
2014
, “
Exergy and Thermoeconomic Analysis of a Solar Air Heating Plant
,”
ASME
Paper No. ESDA2014-20152.
You do not currently have access to this content.