A modeling framework to analyze a wind turbine blade subjected to an out-of-plane transformation is presented. The framework combines aerodynamic and mechanical models to support an automated design process. The former combines the National Renewable Energy Lab (NREL) aerodyn software with a genetic algorithm solver. It defines the theoretical twist angle distribution (TAD) as a function of wind speed. The procedure is repeated for a series of points that form a discrete range of wind speeds. This step establishes the full range of blade transformations. The associated theoretical TAD geometry is subsequently passed to the mechanical model. It creates the TAD geometry in the context of a novel wind turbine blade concept. The blade sections are assumed to be made by additive manufacturing, which enables tunable stiffness. An optimization problem minimizes the difference between the practical and theoretical TAD over the full range of transformations. It does so by selecting the actuator locations and the torsional stiffness ratios of consecutive segments. In the final step, the blade free shape (undeformed position) is found. The model and design support out-of-plane twisting, which can increase energy production and mitigate fatigue loads. The proposed framework is demonstrated through a case study based on energy production. It employs data acquired from the NREL Unsteady Aerodynamics Experiment. A set of blade transformations required to improve the efficiency of a fixed-speed system is examined. The results show up to 3.7% and 2.9% increases in the efficiency at cut-in and rated speeds, respectively.

References

References
1.
GWEC
,
2017
, “
Global Wind Report: Annual Market Update 2016
,” Global Wind Energy Council, Brussels, Belgium,
Report
.http://gwec.net/publications/global-wind-report-2/global-wind-report-2016/
2.
GWEC
,
2016
, “
Global Wind Report: Annual Market Update 2015
,” Global Wind Energy Council, Brussels, Belgium,
Report
.http://gwec.net/publications/global-wind-report-2/global-wind-report-2015-annual-market-update/
3.
Jeong
,
H. G.
,
Seung
,
R. H.
, and
Lee
,
K. B.
,
2012
, “
An Improved Maximum Power Point Tracking Method for Wind Power Systems
,”
Energies
,
5
(
5
), pp.
1339
1354
.
4.
Narayana
,
M.
,
Putrus
,
G.
,
Jovanovic
,
M.
,
Leung
,
P. S.
, and
McDonald
,
S.
,
2012
, “
Generic Maximum Power Point Tracking Controller for Small-Scale Wind Turbines
,”
Renewable Energy
,
44
, pp.
72
79
.
5.
Jabbari Asl
,
H.
, and
Yoon
,
J.
,
2016
, “
Power Capture Optimization of Variable-Speed Wind Turbines Using an Output Feedback Controller
,”
Renewable Energy
,
86
, pp.
517
525
.
6.
Eltamaly
,
A. M.
, and
Farh
,
H. M.
,
2013
, “
Maximum Power Extraction From Wind Energy System Based on Fuzzy Logic Control
,”
Electric Power Syst. Res.
,
97
, pp.
144
150
.
7.
Petković
,
D.
,
Ćojbašić
,
Ž.
,
Nikolić
,
V.
,
Shamshirband
,
S.
,
Kiah
,
M. L. M.
,
Anuar
,
N. B.
, and
Wahab
,
A. W. A.
,
2014
, “
Adaptive Neuro-Fuzzy Maximal Power Extraction of Wind Turbine With Continuously Variable Transmission
,”
Energy
,
64
, pp.
868
874
.
8.
Hall
,
J. F.
,
Palejiya
,
D.
,
Shaltout
,
M. L.
, and
Chen
,
D.
,
2015
, “
An Integrated Control and Design Framework for Optimizing Energy Capture and Component Life for a Wind Turbine Variable Ratio Gearbox
,”
ASME J. Sol. Energy Eng.
,
137
(
2
), p.
021022
.
9.
Ponta
,
F. L.
,
Otero
,
A. D.
,
Rajan
,
A.
, and
Lago
,
L. I.
,
2014
, “
The Adaptive-Blade Concept in Wind-Power Applications
,”
Energy Sustainable Develop.
,
22
, pp.
3
12
.
10.
Hoogedoorn
,
E.
,
Jacobs
,
G. B.
, and
Beyene
,
A.
,
2010
, “
Aero-Elastic Behavior of a Flexible Blade for Wind Turbine Application: A 2D Computational Study
,”
Energy
,
35
(
2
), pp.
778
785
.
11.
Daynes
,
S.
, and
Weaver
,
P. M.
,
2012
, “
Design and Testing of a Deformable Wind Turbine Blade Control Surface
,”
Smart Mater. Struct.
,
21
(
10
), p.
105019
.
12.
Pechlivanoglou
,
G.
,
Wagner
,
J.
,
Nayeri
,
C.
, and
Paschereit
,
C.
,
2010
, “
Active Aerodynamic Control of Wind Turbine Blades With High Deflection Flexible Flaps
,”
AIAA
Paper No. 2010-644.
13.
Rasmussen
,
F.
,
Petersen
,
J. T.
,
Vølund
,
P.
,
Leconte
,
P.
,
Szechenyi
,
E.
, and
Westergaard
,
C.
,
1998
, “
Soft Rotor Design for Flexible Turbines
,” Risø National Laboratory, Roskilde, Denmark, Final Report No.
JOU3-CT95-0062
.https://cordis.europa.eu/docs/publications/4769/47698171-6_en.pdf
14.
Unguran
,
R.
, and
Kuhn
,
M.
,
2016
, “
Combined Individual Pitch and Trailing Edge Flap Control for Structural Load Alleviation of Wind Turbines
,”
American Control Conference
(
ACC
), Piscataway, NJ, July 6–8, pp.
2307
2313
.
15.
Lachenal
,
X.
,
Daynes
,
S.
, and
Weaver
,
P. M.
,
2013
, “
Review of Morphing Concepts and Materials for Wind Turbine Blade Applications
,”
Wind Energy
,
16
(
2
), pp.
283
307
.
16.
Gili
,
P.
, and
Frulla
,
G.
,
2016
, “
A Variable Twist Blade Concept for More Effective Wind Generation: Design and Realization
,”
Smart Sci.
,
4
(
2
), pp.
78
86
.
17.
Loth
,
E.
,
Selig
,
M.
, and
Moriarty
,
P.
,
2010
, “
Morphing Segmented Wind Turbine Concept
,”
AIAA
Paper No. 2010-4400.
18.
Wang
,
W.
,
Caro
,
S.
,
Bennis
,
F.
, and
Salinas Mejia
,
O. R.
,
2013
, “
A Simplified Morphing Blade for Horizontal Axis Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p.
011018
.
19.
Runge
,
J.-B.
,
Osmont
,
D.
, and
Ohayon
,
R.
,
2012
, “
Twist Control of Aerodynamic Profiles by a Reactive Method (Experimental Results)
,”
J. Intell. Mater. Syst. Struct.
,
24
(
8
), pp.
908
923
.
20.
Park
,
J.-S.
,
Kim
,
S.-H.
,
Jung
,
S. N.
, and
Lee
,
M.-K.
,
2010
, “
Design and Analysis of Variable-Twist Tiltrotor Blades Using Shape Memory Alloy Hybrid Composites
,”
Smart Mater. Struct.
,
20
(
1
), p.
015001
.
21.
Berg
,
D.
,
Johnson
,
S. J.
, and
Van Dam
,
C. P.
,
2008
, “
Active Load Control Techniques for Wind Turbines
,” Sandia National Laboratories, Sandia National Laboratories, Albuquerque, NM, Report No.
SAND2008-4809
.http://windpower.sandia.gov/other/084809.pdf
22.
Lobitz
,
D. W.
,
Veers
,
P. S.
,
Eisler
,
G. R.
,
Laino
,
D. J.
,
Migliore
,
P. G.
, and
Bir
,
G.
,
2001
, “
The Use of Twist-Coupled Blades to Enhance the Performance of Horizontal Axis Wind Turbines
,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND2001-1003
.http://energy.sandia.gov/wp-content/gallery/uploads/SAND2001-1303.pdf
23.
Giuseppe
,
S.
,
Mario
,
C.
,
Manuela
,
B.
,
Piero
,
G.
, and
Giacomo
,
F.
,
2016
, “
Wind Generator Innovative Blade Design: Variable Twist and Start-Up Control
,”
Int. J. Mech.
,
10
, pp.
53
61
.http://www.naun.org/main/NAUN/mechanics/2016/a182003-176.pdf
24.
IEA Wind
,
2013
, “
Long-Term Research and Development Needs for Wind Energy for the Time Frame 2012 to 2030
,” International Energy Agency Wind, Paris, France.
25.
Berman
,
B.
,
2012
, “
3-D Printing: The New Industrial Revolution
,”
Bus. Horiz.
,
55
(
2
), pp.
155
162
.
26.
Weller
,
C.
,
Kleer
,
R.
, and
Piller
,
F. T.
,
2015
, “
Economic Implications of 3D Printing: Market Structure Models in Light of Additive Manufacturing Revisited
,”
Int. J. Prod. Econ.
,
164
, pp.
43
56
.
27.
Fuglsang
,
P.
, and
Thomsen
,
K.
,
2001
, “
Site-Specific Design Optimization of 1.5–2.0 MW Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
123
(
4
), pp.
296
303
.
28.
Ford
,
S.
, and
Despeisse
,
M.
,
2016
, “
Additive Manufacturing and Sustainability: An Exploratory Study of the Advantages and Challenges
,”
J. Cleaner Prod.
,
137
, pp.
1573
1587
.
29.
Moon
,
S. K.
,
Tan
,
Y. E.
,
Hwang
,
J.
, and
Yoon
,
Y.-J.
,
2014
, “
Application of 3D Printing Technology for Designing Light-Weight Unmanned Aerial Vehicle Wing Structures
,”
Int. J. Precis. Eng. Manuf.
,
1
(
3
), pp.
223
228
.
30.
Thompson
,
M. K.
,
Moroni
,
G.
,
Vaneker
,
T.
,
Fadel
,
G.
,
Campbell
,
R. I.
,
Gibson
,
I.
,
Bernard
,
A.
,
Schulz
,
J.
,
Graf
,
P.
,
Ahuja
,
B.
, and
Martina
,
F.
,
2016
, “
Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints
,”
CIRP Ann.-Manuf. Technol.
,
65
(
2
), pp.
737
760
.
31.
Hand
,
M. M.
,
Simms
,
D. A.
,
Fingersh
,
L. J.
,
Jager
,
D. W.
,
Cotrell
,
J. R.
,
Schreck
,
S.
, and
Larwood
,
S. M.
,
2001
, “
Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL/TP-500-29955
.https://www.nrel.gov/docs/fy02osti/29955.pdf
32.
Gonzalez
,
A.
, and
Munduate
,
X.
,
2008
, “
Three-Dimensional and Rotational Aerodynamics on the NREL Phase VI Wind Turbine Blade
,”
ASME J. Sol. Energy Eng.
,
130
(
3
), p.
031008
.
33.
Moriarty
,
P. J.
, and
Hansen
,
A. C.
,
2005
, AeroDyn Theory Manual,
National Renewable Energy Laboratory, Golden, CO
, Technical Report No.
NREL/TP-500-36881
.http://163.25.96.18/courses/FluidMachinary/NREL-2005-Moriarty-AeroDynTheoryManual-36881.pdf
34.
Dehouck
,
V.
,
Lateb
,
M.
,
Sacheau
,
J.
, and
Fellouah
,
H.
,
2017
, “
Application of the Blade Element Momentum Theory to Design Horizontal Axis Wind Turbine Blades
,”
ASME J. Sol. Energy Eng.
,
140
(
1
), p.
014501
.
35.
Fischer
,
G. R.
,
Kipouros
,
T.
, and
Savill
,
A. M.
,
2014
, “
Multi-Objective Optimisation of Horizontal Axis Wind Turbine Structure and Energy Production Using Aerofoil and Blade Properties as Design Variables
,”
Renewable Energy
,
62
, pp.
506
515
.
36.
Hassanzadeh
,
A.
,
Hassanzadeh Hassanabad
,
A.
, and
Dadvand
,
A.
,
2016
, “
Aerodynamic Shape Optimization and Analysis of Small Wind Turbine Blades Employing the Viterna Approach for Post-Stall Region
,”
Alexandria Eng. J.
,
55
(
3
), pp.
2035
2043
.
37.
Tahani
,
M.
,
Kavari
,
G.
,
Masdari
,
M.
, and
Mirhosseini
,
M.
,
2017
, “
Aerodynamic Design of Horizontal Axis Wind Turbine With Innovative Local Linearization of Chord and Twist Distributions
,”
Energy
,
131
, pp.
78
91
.
38.
Poole
,
S.
, and
Phillips
,
R.
,
2016
, “
Optimization of a Mini H.A.W.T. to Increase Energy Yield During Short Duration Wind Variations
,”
J. New Gener. Sci.
,
14
(
2
), pp.
47
59
39.
Hansen
,
M. O. L.
,
2008
,
Aerodynamics of Wind Turbines
,
Earthscan
,
London
.
You do not currently have access to this content.