The parabolic trough collector (PTC) is one of the most widely deployed concentrating solar power technology in the world. This study aims at improving the operational efficiency of the commercially available LS-2 solar collector by increasing the convective heat transfer coefficient inside the receiver tube. The two main factors affecting this parameter are the properties of the working fluid and the inner geometry of the receiver tube. An investigation was carried out on six different working fluids: pressurized water, supercritical CO2, Therminol VP-1, and the addition of CuO, Fe3O4, and Al2O3 nanoparticles to Therminol VP-1. Furthermore, the influence of a converging-diverging tube with sine geometry is investigated because this geometry increases the heat transfer surface and enhances turbulent flow within the receiver. The results showed that of all the fluids investigated, the Al2O3/Oil nanofluid provides the best improvement of 0.22% to thermal efficiency, while the modified geometry accounted for a 1.13% increase in efficiency. Other parameters investigated include the exergy efficiency, heat transfer coefficient, outlet temperatures, and pressure drop. The analysis and modeling of a parabolic trough receiver are implemented in engineering equation solver (EES).

References

References
1.
Najjar
,
Y. S. H.
, and
Sadeq
,
J.
,
2012
, “
Modeling and Simulation of Solar Thermal Power System Using Parabolic Trough Collector
,”
J. Energy Eng. ASCE
,
143
(
2
), pp.
1
9
.
2.
Okonkwo
,
E. C.
,
Okwose
,
C. F.
, and
Abbasoglu
,
S.
,
2017
, “
Techno-Economic Analysis of the Potential Utilization of a Hybrid PV-Wind Turbine System for Commercial Buildings in Jordan
,”
Int. J. Renewable Energy Res.
,
7
(
2
), pp.
908
914
.http://www.ijrer.org/ijrer/index.php/ijrer/article/view/5735/pdf
3.
Hernández-Román
,
M. Á.
,
Manzano-Ramírez
,
A.
,
Pineda-Piñón
,
J.
, and
Ortega-Moody
,
J.
,
2014
, “
Exergetic and Thermoeconomic Analyses of Solar Air Heating Processes Using a Parabolic Trough Collector
,”
Entropy
,
16
(
8
), pp.
4612
4625
.
4.
Abid
,
M.
,
Ratlamwala
,
T. A. H.
, and
Atikol
,
U.
,
2015
, “
Performance Assessment of Parabolic Dish and Parabolic Trough Solar Thermal Power Plant Using Nanofluids and Molten Salts
,”
Int. J. Energy Res
,
40
(
4
), pp.
550
563
.
5.
Kalogirou
,
S.
,
2009
,
Solar Energy Engineering: Processes and Systems
,
Elsevier
,
Amsterdam, The Netherlands
.
6.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes Solar Engineering
,
Wiley
, New York.
7.
Behar
,
O.
,
Khellaf
,
A.
, and
Mohammedi
,
K.
,
2015
, “
A Novel Parabolic Trough Solar Collector Model—Validation With Experimental Data and Comparison to Engineering Equation Solver (EES)
,”
Energy Convers. Manage.
,
106
, pp.
268
281
.
8.
Kalogirou
,
S. A.
,
2004
, “
Solar Thermal Collectors and Applications
,”
Prog. Energy Combust. Sci.
,
30
(
3
), pp.
231
295
.
9.
Bellos
,
E.
,
Tzivanidis
,
C.
,
Antonopoulos
,
K. A.
, and
Gkinis
,
G.
,
2016
, “
Thermal Enhancement of Solar Parabolic Trough Collectors by Using Nanofluids and Converging-Diverging Absorber Tube
,”
Renewable Energy
,
94
, pp.
213
222
.
10.
Fuqiang
,
W.
,
Ziming
,
C.
,
Jianyu
,
T.
,
Yuan
,
Y.
,
Yong
,
S.
, and
Linhua
,
L.
,
2017
, “
Progress in Concentrated Solar Power Technology With Parabolic Trough Collector System: A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
79
, pp.
1314
1328
.
11.
Bergman
,
T. L.
,
Lavigne
,
A. S.
, and
Incropera
,
F. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed.,
Wiley
, Hoboken, NJ.
12.
Mwesigye
,
A.
, and
Meyer
,
J. P.
,
2017
, “
Optimal Thermal and Thermodynamic Performance of a Solar Parabolic Trough Receiver With Different Nanofluids and at Different Concentration Ratios
,”
Appl. Energy
,
193
, pp.
393
413
.
13.
Amina
,
B.
,
Miloud
,
A.
,
Samir
,
L.
,
Abdelylah
,
B.
, and
Solano
,
J. P.
,
2016
, “
Heat Transfer Enhancement in a Parabolic Trough Solar Receiver Using Longitudinal Fins and Nanofluids
,”
J. Therm. Sci.
,
25
(
5
), pp.
410
417
.
14.
Chamkha
,
A. J.
,
Miroshnichenko
,
I. V.
, and
Sheremet
,
M. A.
,
2017
, “
Numerical Analysis of Unsteady Conjugate Natural Convection of Hybrid Water-Based Nanofluid in a Semi-Circular Cavity
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
4
), p. 041004.
15.
Sokhansefat
,
T.
,
Kasaeian
,
A. B.
, and
Kowsary
,
F.
,
2014
, “
Heat Transfer Enhancement in Parabolic Trough Collector Tube Using Al2O3/Synthetic Oil Nanofluid
,”
Renewable Sustainable Energy Rev.
,
33
, pp.
636
644
.
16.
Hung
,
Y. H.
,
Teng
,
T. P.
, and
Lin
,
B. G.
,
2013
, “
Evaluation of the Thermal Performance of a Heat Pipe Using Alumina Nanofluids
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
504
511
.
17.
Hussein
,
A. K.
,
2016
, “
Applications of Nanotechnology to Improve the Performance of Solar Collectors—Recent Advances and Overview
,”
Renewable Sustainable Energy Rev.
,
62
, pp.
767
790
.
18.
Shojaeizadeh
,
E.
,
Veysi
,
F.
, and
Kamandi
,
A.
,
2015
, “
Exergy Efficiency Investigation and Optimization of an Al2O3–Water Nanofluid Based Flat-Plate Solar Collector
,”
Energy Build.
,
101
, pp.
12
23
.
19.
Ghozatloo
,
A.
,
Rashidi
,
A.
, and
Shariaty-Niassar
,
M.
,
2014
, “
Convective Heat Transfer Enhancement of Graphene Nanofluids in Shell and Tube Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
53
, pp.
136
141
.
20.
Mwesigye
,
A.
,
Huan
,
Z.
, and
Meyer
,
J. P.
,
2015
, “
Thermodynamic Optimisation of the Performance of a Parabolic Trough Receiver Using Synthetic Oil–Al2O3 Nanofluid
,”
Appl. Energy
,
156
, pp.
398
412
.
21.
Hussein
,
A. M.
,
Sharma
,
K. V.
,
Bakar
,
R. A.
, and
Kadirgama
,
K.
,
2013
, “
The Effect of Nanofluid Volume Concentration on Heat Transfer and Friction Factor Inside a Horizontal Tube
,”
J. Nanomater.
,
2013
, p. 859563.
22.
Loni
,
R.
,
Asli-ardeh
,
E. A.
,
Ghobadian
,
B.
,
Kasaeian
,
A. B.
, and
Gorjian
,
S.
,
2017
, “
Thermodynamic Analysis of a Solar Dish Receiver Using Different Nanofluids
,”
Energy
,
133
, pp.
749
760
.
23.
Yousefi
,
T.
,
Veysi
,
F.
,
Shojaeizadeh
,
E.
, and
Zinadini
,
S.
,
2012
, “
An Experimental Investigation on the Effect of Al2O3-H2O Nanofluid on the Efficiency of Flat-Plate Solar Collectors
,”
Renewable Energy
,
39
(
1
), pp.
293
298
.
24.
Coccia
,
G.
,
Di Nicola
,
G.
,
Colla
,
L.
,
Fedele
,
L.
, and
Scattolini
,
M.
,
2016
, “
Adoption of Nanofluids in Low-Enthalpy Parabolic Trough Solar Collectors: Numerical Simulation of the Yearly Yield
,”
Energy Convers. Manage.
,
118
, pp.
306
319
.
25.
Wang
,
Y.
,
Xu
,
J.
,
Liu
,
Q.
,
Chen
,
Y.
, and
Liu
,
H.
,
2016
, “
Performance Analysis of a Parabolic Trough Solar Collector Using Al2O3/Synthetic Oil Nanofluid
,”
Appl. Therm. Eng.
,
107
, pp.
469
478
.
26.
Khakrah
,
H.
,
Shamloo
,
A.
, and
Kazemzadeh Hannani
,
S.
,
2017
, “
Determination of Parabolic Trough Solar Collector Efficiency Using Nanofluid: A Comprehensive Numerical Study
,”
ASME J. Sol. Energy Eng.
,
139
(
5
), p.
051006
.
27.
Yousefi
,
T.
,
Veisy
,
F.
,
Shojaeizadeh
,
E.
, and
Zinadini
,
S.
,
2012
, “
An Experimental Investigation on the Effect of MWCNT-H2O Nanofluid on the Efficiency of Flat-Plate Solar Collectors
,”
Exp. Therm. Fluid Sci.
,
39
, pp.
207
212
.
28.
Kasaeian
,
A.
,
Daneshazarian
,
R.
,
Rezaei
,
R.
,
Pourfayaz
,
F.
, and
Kasaeian
,
G.
,
2017
, “
Experimental Investigation on the Thermal Behavior of Nanofluid Direct Absorption in a Trough Collector
,”
J. Clean. Prod.
,
158
, pp.
276
284
.
29.
Kasaeian
,
A.
,
Daneshazarian
,
R.
, and
Pourfayaz
,
F.
,
2017
, “
Comparative Study of Different Nanofluids Applied in a Trough Collector With Glass-Glass Absorber Tube
,”
J. Mol. Liq.
,
234
, pp.
315
323
.
30.
Budisa
,
N.
, and
Schulze-Makuch
,
D.
,
2014
, “
Supercritical Carbon Dioxide and Its Potential as a Life-Sustaining Solvent in a Planetary Environment
,”
Life
,
4
(
3
), pp.
331
340
.
31.
Qiu
,
Y.
,
Li
,
M.-J.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2017
, “
Thermal Performance Analysis of a Parabolic Trough Solar Collector Using Supercritical CO2 as Heat Transfer Fluid Under Non-Uniform Solar Flux
,”
Appl. Therm. Eng.
,
115
, pp.
1255
1265
.
32.
Pitla
,
S. S.
,
Groll
,
E. A.
,
Robinson
,
D. M.
, and
Ramadhyani
,
S.
,
1998
, “
Heat Transfer From Supercritical Carbon Dioxide in Tube Flow: A Critical Review
,”
HVACR Res.
,
4
(
3
), pp.
281
301
.
33.
Liao
,
S. M.
, and
Zhao
,
T. S.
,
2002
, “
An Experimental Investigation of Convection Heat Transfer to Supercritical Carbon Dioxide in Miniature Tubes
,”
Int. J. Heat Mass Transfer
,
45
(
25
), pp.
5025
5034
.
34.
Jiang
,
P. X.
,
Zhao
,
C.-R.
,
Deng
,
J.-Q.
, and
Zhang
,
W.-X.
,
2008
, “
Experimental Investigation of Local Heat Transfer of Carbon Dioxide at Super-Critical Pressures in a Vertical Tube and Multi-Port Mini-Channels Under Cooling Conditions
,”
International Refrigrator Air Conditioning Conference
, West Lafayette, IN, July 14–17, pp.
1
8
.https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1891&context=iracc
35.
Jaramillo
,
O. A.
,
Borunda
,
M.
,
Velazquez-Lucho
,
K. M.
, and
Robles
,
M.
,
2016
, “
Parabolic Trough Solar Collector for Low Enthalpy Processes: An Analysis of the Efficiency Enhancement by Using Twisted Tape Inserts
,”
Renewable Energy
,
93
, pp.
125
141
.
36.
Bharadwaj
,
P.
,
Khondge
,
A. D.
, and
Date
,
A. W.
,
2009
, “
Heat Transfer and Pressure Drop in a Spirally Grooved Tube With Twisted Tape Insert
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
1938
1944
.
37.
Gunes
,
S.
,
Ozceyhan
,
V.
, and
Buyukalaca
,
O.
,
2010
, “
Heat Transfer Enhancement in a Tube With Equilateral Triangle Cross Sectioned Coiled Wire Inserts
,”
Exp. Therm. Fluid Sci.
,
34
(
6
), pp.
684
691
.
38.
Mwesigye
,
A.
,
Bello-Ochende
,
T.
, and
Meyer
,
J. P.
,
2013
, “
Heat Transfer Enhancement in a Parabolic Trough Receiver Using Wall Detached Twisted Tape Inserts
,”
ASME
Paper No. IMECE2013-62745.
39.
Garg
,
V. K.
, and
Maji
,
P. K.
,
1987
, “
Flow Through a Converging-Diverging Tube With Constant Wall Enthalpy
,”
Numer. Heat Transfer
,
12
(
3
), pp.
285
305
.
40.
Deiber
,
J. A.
, and
Schowalter
,
W. R.
,
1979
, “
Flow Through Tubes With Sinusoidal Axial Variations in Diameter
,”
AIChE J.
,
25
(
4
), pp.
638
645
.
41.
Sparrow
,
E. M.
, and
Prata
,
A. T.
,
1983
, “
Numerical Solutions for Laminar Flow and Heat Transfer in a Periodically Converging-Diverging Tube, With Experimental Confirmation
,”
Numer. Heat Transfer
,
6
(
4
), pp.
441
461
.
42.
Yang
,
M.
,
Yang
,
X.
,
Yang
,
X.
, and
Ding
,
J.
,
2010
, “
Heat Transfer Enhancement and Performance of the Molten Salt Receiver of a Solar Power Tower
,”
Appl. Energy
,
87
(
9
), pp.
2808
2811
.
43.
Lu
,
J.
,
Sheng
,
X.
,
Ding
,
J.
, and
Yang
,
J.
,
2013
, “
Transition and Turbulent Convective Heat Transfer of Molten Salt in Spirally Grooved Tube
,”
Exp. Therm. Fluid Sci.
,
47
, pp.
180
185
.
44.
Mohammed
,
H. A.
,
Al-Shamani
,
A. N.
, and
Sheriff
,
J. M.
,
2012
, “
Thermal and Hydraulic Characteristics of Turbulent Nanofluids Flow in a Rib-Groove Channel
,”
Int. Commun. Heat Mass Transfer
,
39
(
10
), pp.
1584
1594
.
45.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Tsimpoukis
,
D.
,
2017
, “
Thermal Enhancement of Parabolic Trough Collector With Internally Finned Absorbers
,”
Appl. Energy
,
205
, pp.
540
561
.
46.
Muñoz
,
J.
, and
Abánades
,
A.
,
2011
, “
Analysis of Internal Helically Finned Tubes for Parabolic Trough Design by CFD Tools
,”
Appl. Energy
,
88
(
11
), pp.
4139
4149
.
47.
García
,
A.
,
Solano
,
J. P.
,
Vicente
,
P. G.
, and
Viedma
,
A.
,
2012
, “
The Influence of Artificial Roughness Shape on Heat Transfer Enhancement: Corrugated Tubes, Dimpled Tubes and Wire Coils
,”
Appl. Therm. Eng
,
35
(
1
), pp.
196
201
.
48.
Sandeep
,
H. M.
, and
Arunachala
,
U. C.
,
2017
, “
Solar Parabolic Trough Collectors: A Review on Heat Transfer Augmentation Techniques
,”
Renewable Sustainable Energy Rev.
,
69
, pp.
1218
1231
.
49.
Dudley
,
V. E.
,
Kolb
,
G. J.
,
Mahoney
,
A. R.
,
Mancini
,
T. R.
,
Matthews
,
C. W.
,
Sloan
,
M.
,
Kearney
,
D.
,
Dudley
,
V.
,
Kolb
,
G.
,
Sloan
,
M.
, and
Kearney
,
D.
,
1994
, “
Test Results: SEGS LS-2 Solar Collector
,” Sandia National Laboratory, Albuquerque, NM,
Report
.http://large.stanford.edu/publications/coal/references/troughnet/solarfield/docs/segs_ls2_solar_collector.pdf
50.
Mohammad Zadeh
,
P.
,
Sokhansefat
,
T.
,
Kasaeian
,
A. B.
,
Kowsary
,
F.
, and
Akbarzadeh
,
A.
,
2015
, “
Hybrid Optimization Algorithm for Thermal Analysis in a Solar Parabolic Trough Collector Based on Nanofluid
,”
Energy
,
82
, pp.
857
864
.
51.
Petela
,
R.
,
1964
, “
Exergy of Heat Radiation
,”
ASME J. Heat Transfer
,
86
(
2
), pp.
187
192
.
52.
Padilla
,
R. V.
,
Fontalvo
,
A.
,
Demirkaya
,
G.
,
Martinez
,
A.
, and
Quiroga
,
A. G.
,
2014
, “
Exergy Analysis of Parabolic Trough Solar Receiver
,”
Appl. Therm. Eng.
,
67
(
1–2
), pp.
579
586
.
53.
Solutia,
2014
, “
Therminol VP-1. 1–5
,” Solutia, St. Louis, MI, accessed May 4, 2018, http://twt.mpei.ac.ru/tthb/hedh/htf-vp1.pdf
54.
Abid
,
M.
,
Ratlamwala
,
T. A. H.
, and
Atikol
,
U.
,
2017
, “
Solar Assisted Multi-Generation System Using Nanofluids: A Comparative Analysis
,”
Int. J. Hydrogen Energy
,
42
(
33
), pp.
21429
21442
.
55.
Hassani
,
S.
,
Saidur
,
R.
,
Mekhilef
,
S.
, and
Hepbasli
,
A.
,
2015
, “
A New Correlation for Predicting the Thermal Conductivity of Nanofluids; Using Dimensional Analysis
,”
Int. J. Heat Mass Transfer
,
90
, pp.
121
130
.
56.
Khanafer
,
K.
, and
Vafai
,
K.
,
2011
, “
A Critical Synthesis of Thermophysical Characteristics of Nanofluids
,”
Int. J. Heat Mass Transfer
,
54
(
19–20
), pp.
4410
4428
.
57.
Batchelor
,
G. K.
,
1977
, “
The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles
,”
J. Fluid Mech.
,
83
(
1
), pp.
97
117
.
58.
Sharma
,
K. V.
,
Azmi
,
W. H.
,
Kamal
,
S.
,
Sarma
,
P. K.
, and
Vijayalakshmi
,
B.
,
2016
, “
Theoretical Analysis of Heat Transfer and Friction Factor for Turbulent Flow of Nanofluids Through Pipes
,”
Can. J. Chem. Eng.
,
94
(
3
), pp.
565
575
.
59.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.https://www.scopus.com/record/display.uri?eid=2-s2.0-84964527772&origin=inward&txGid=29bbc0607155b23c55890d2c80457a0c
60.
Xuan
,
Y.
, and
Li
,
Q.
,
2003
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
,
125
(
1
), pp.
151
155
.
61.
Forristall
,
R.
,
2003
, “
Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-550-34169
.https://www.nrel.gov/docs/fy04osti/34169.pdf
62.
Jamali
,
H.
,
2016
, “
Analyses of Absorber Tube of Parabolic Trough Solar Collector (PTSC) Based on Convective Heat Transfer Coefficient of Fluid
,”
Int. Energy J.
,
16
(2), pp.
73
86
.http://www.rericjournal.ait.ac.th/index.php/reric/article/view/1332/473
63.
Ma
,
Z.
, and
Turchi
,
C.
,
2011
, “
Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems
,”
Supercritical CO2 Power Cycle Symposium
, Boulder, CO, May 24–25, pp.
4
7
.https://www.nrel.gov/docs/fy11osti/50787.pdf
64.
AnthroPower,
2014
, “
Parabolic Trough Based Solar System Operations & Maintenance Manual
,” AnthroPower, New Delhi, India, accessed May 4, 2018, https://mnre.gov.in/file-manager/UserFiles/CST-Manuals/PTC_E.pdf
You do not currently have access to this content.