Solar-to-thermal energy conversion technologies are an important and increasingly promising segment of our renewable energy technology future. Today, concentrated solar power (CSP) plants provide a method to efficiently store and distribute solar energy. Current industrial solar-to-thermal energy technologies employ selective solar absorber coatings to collect solar radiation, which suffer from low solar-to-thermal efficiencies at high temperatures due to increased thermal emission from selective absorbers. Solar absorbing nanofluids (a heat transfer fluid (HTF) seeded with nanoparticles), which can be volumetrically heated, are one method to improve solar-to-thermal energy conversion at high temperatures. To date, radiative analyses of nanofluids via the radiative transfer equation (RTE) have been conducted for low temperature applications and for flow conditions and geometries that are not representative of the technologies used in the field. In this work, we present the first comprehensive analysis of nanofluids for CSP plants in a parabolic trough configuration. This geometry was chosen because parabolic troughs are the most prevalent CSP technologies. We demonstrate that the solar-to-thermal energy conversion efficiency can be optimized by tuning the nanoparticle volume fraction, the temperature of the nanofluid, and the incident solar concentration. Moreover, we demonstrate that direct solar absorption receivers have a unique advantage over current surface-based solar coatings at large tube diameters. This is because of a nanofluid's tunability, which allows for high solar-to-thermal efficiencies across all tube diameters enabling small pressure drops to pump the HTF at large tube diameters.

References

References
1.
Lenert
,
A.
, and
Wang
,
E. N.
,
2012
, “
Optimization of Nanofluid Volumetric Receivers for Solar Thermal Energy Conversion
,”
Sol. Energy
,
86
(
1
), pp.
253
265
.
2.
Bermel
,
P.
,
Lee
,
J.
,
Joannopoulos
,
J. D.
,
Celanovic
,
I.
, and
Soljacie
,
M.
,
2012
, “
Selective Solar Absorbers
,”
Annual Review of Heat Transfer
, Vol.
15
,
Begell House
, Danbury, CT, pp.
231
254
.
3.
Otanicar
,
T. P.
,
Phelan
,
P. E.
,
Prasher
,
R. S.
,
Rosengarten
,
G.
, and
Taylor
,
R. A.
,
2010
, “
Nanofluid-Based Direct Absorption Solar Collector
,”
J. Renewable Sustainable Energy
,
2
(
3
), p. 033102.
4.
Tyagi
,
H.
,
Phelan
,
P.
, and
Prasher
,
R.
,
2009
, “
Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector
,”
ASME J. Sol. Energy Eng.
,
131
(
4
), p.
041004
.
5.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T. P.
,
Adrian
,
R.
, and
Prasher
,
R.
,
2011
, “
Nanofluid Optical Property Characterization: Towards Efficient Direct Absorption Solar Collectors
,”
Nanoscale Res. Lett.
,
6
(
1
), p. 225.
6.
Bohn
,
M. S.
, and
Wang
,
K. Y.
,
1988
, “
Experiments and Analysis on the Molten-Salt Direct Absorption Receiver Concept
,”
ASME J. Sol. Energy Eng.
,
110
(
1
), pp.
45
51
.
7.
Huang
,
B. J.
,
Wung
,
T. Y.
, and
Nieh
,
S.
,
1979
, “
Thermal-Analysis of Black Liquid Cylindrical Parabolic Collector
,”
Sol. Energy
,
22
(
3
), pp.
221
224
.
8.
Minardi
,
J. E.
, and
Chuang
,
H. N.
,
1975
, “
Performance of a Black Liquid Flat-Plate Solar Collector
,”
Sol. Energy
,
17
(
3
), pp.
179
183
.
9.
Gupta
,
H. K.
,
Das Agrawal
,
G.
, and
Mathur
,
J.
,
2015
, “
An Experimental Investigation of a Low Temperature Al2O3-H2O Nanofluid Based Direct Absorption Solar Collector
,”
Sol. Energy
,
118
, pp.
390
396
.
10.
Kumar
,
S.
, and
Tien
,
C. L.
,
1990
, “
Analysis of Combined Radiation and Convection in a Particulate-Laden Liquid-Film
,”
ASME J. Sol. Energy Eng.
,
112
(
4
), pp.
293
300
.
11.
Kumar
,
S.
,
Majumdar
,
A.
, and
Tien
,
C. L.
,
1990
, “
The Differential-Discrete-Ordinate Method for Solutions of the Equation of Radiative-Transfer
,”
ASME J. Heat Transfer
,
112
(
2
), pp.
424
429
.
12.
Fernandez-Garcia
,
A.
,
Zarza
,
E.
,
Valenzuela
,
L.
, and
Perez
,
M.
,
2010
, “
Parabolic-Trough Solar Collectors and Their Applications
,”
Renewable Sustainable Energy Rev.
,
14
(
7
), pp.
1695
1721
.
13.
Blair
,
N.
,
Dobos
,
A. P.
,
Freeman
,
J.
,
Neises
,
T.
,
Wagner
,
M.
,
Ferguson
,
T.
,
Gilman
,
P.
, and
Janzou
,
S.
,
2014
, “
System Advisor Model, SAM 2014.1.14: General Description
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL/TP-6A20-61019
.https://www.nrel.gov/docs/fy14osti/61019.pdf
14.
Otanicar
,
T. P.
,
Phelan
,
P. E.
, and
Golden
,
J. S.
,
2009
, “
Optical Properties of Liquids for Direct Absorption Solar Thermal Energy Systems
,”
Sol. Energy
,
83
(
7
), pp.
969
977
.
15.
Lupfert
,
E.
,
Pottler
,
K.
,
Ulmer
,
S.
,
Riffelmann
,
K.-J.
,
Neumann
,
A.
, and
Schiricke
,
B.
,
2006
, “
Parabolic Trough Optical Performance Analysis Techniques
,”
ASME J. Sol. Energy Eng.
,
129
(
2
), pp.
147
152
.
16.
Schiricke
,
B.
,
Pitz-Paal
,
R.
,
Lupfert
,
E.
,
Pottler
,
K.
,
Pfander
,
M.
,
Riffelmann
,
K.-J.
, and
Neumann
,
A.
,
2009
, “
Experimental Verification of Optical Modeling of Parabolic Trough Collectors by Flux Measurement
,”
ASME J. Sol. Energy Eng.
,
131
(
1
), p.
011004
.
17.
Rakic
,
A. D.
,
Djurisic
,
A. B.
,
Elazar
,
J. M.
, and
Majewski
,
M. L.
,
1998
, “
Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices
,”
Appl. Opt.
,
37
(
22
), pp.
5271
5283
.
18.
Hagemann
,
H. J.
,
Gudat
,
W.
, and
Kunz
,
C.
,
1975
, “
Optical-Constants From Far Infrared to X-Ray Region—Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3
,”
J. Opt. Soc. Am.
,
65
(
6
), pp.
742
744
.
19.
Kerker
,
M.
,
1969
,
The Scattering of Light, and Other Electromagnetic Radiation
,
Academic Press
,
New York
.
20.
Bohren
,
C. F.
, and
Huffman
,
D. R.
,
1983
,
Absorption and Scattering of Light by Small Particles
,
Wiley
,
New York
.
21.
Solutia
, 2003, “
Therminol VP-1 Vapor Phase, Liquid Phase Heat Transfer Fluid 12°C to 400°C
,” Solutia, St. Louis, MI, accessed May 3, 2018, http://twt.mpei.ac.ru/tthb/hedh/htf-vp1.pdf
22.
Incropera
,
F. P.
,
DeWitt
,
D. P.
, and
Incropera
,
F. P.
,
1985
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
You do not currently have access to this content.