A solar heating compound parabolic collector (CPC) using air and palm oil as heat carrier fluid is proposed and analyzed within this study via heat transfer and ray tracing simulations. The system is a linear focusing solar system intended to be used for applications across a broad range of industrial sectors for generating medium temperature heat up to 250 °C. The Monte Carlo ray tracing method was used to predict the optical performances of the receiver. We have developed a simplified thermal model to investigate and analyze the thermal performances of the receiver under different conditions. It has been demonstrated that the investigated receiver satisfactorily matches the heat demand by producing low and medium temperature heat with an annual system efficiency of 45%.

References

References
1.
IEA
,
2014
, “
Emissions Reduction Through Upgrade of Coal-Fired Power Plants
,” International Energy Agency, Paris, France,
Report
.https://www.iea.org/publications/freepublications/publication/PartnerCountrySeriesEmissionsReductionthroughUpgradeofCoalFiredPowerPlants.pdf
2.
Ministre de l'Energie, des Mines, de l'Eau et de l'Environnement
,
2014
, “
Programme Marocain de l'énérgie solaire
,” Ministre de l'Energie, des Mines, de l'Eau et de l'Environnement.
3.
Norton
,
B.
,
2012
, “
Industrial and Agricultural Applications of Solar Heat
,”
Comprehensive Renewable Energy
, Elsevier, Amsterdam, The Netherlands, Chap. 3.17.
4.
Hautmann
,
G.
,
Seling
,
M.
, and
Mertins
,
M.
,
2009
, “
First European Linear Fresnel Power Plant in Operation-Operational Experience & Outlook
,”
15th International SolarPACES Symposium on Solar Thermal Concentrating Technologies
, Berlin, Sept. 15–18, Paper No. 16541.
5.
Bernhard
,
R.
,
Laabs
,
H. G.
,
Lalaing
,
J.
,
Eck
,
M.
,
Eickhoff
,
M.
,
Pottler
,
K.
,
Morin, G.
,
Heimsath, A.
,
Georg, A.
, and
Häberle, A.
,
2009
, “
Linear Fresnel Collector Demonstration on the PSA—Part I: Design, Construction and Quality Control
,”
15th International SolarPACES Symposium on Solar Thermal Concentrating Technologies
, Berlin, Sept. 15–18, pp. 3–7.
6.
Lin
,
M.
,
Sumathy
,
K.
,
Dai
,
Y. J.
,
Wang
,
R. Z.
, and
Chen
,
Y.
,
2013
, “
Experimental and Theoretical Analysis on a Linear Fresnel Reflector Solar Collector Prototype With V-Shaped Cavity Receiver
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
963
972
.
7.
Mills
,
D. R.
, and
Morrison
,
G. L.
,
2000
, “
Compact Linear Fresnel Reflector Solar Thermal Power Plants
,”
Sol. Energy
,
68
(
3
), pp.
263
283
.
8.
Abbas
,
R.
,
Muñoz
,
J.
, and
Martínez-Val
,
J. M.
,
2012
, “
Steady-State Thermal Analysis of an Innovative Receiver for Linear Fresnel Reflectors
,”
Appl. Energy
,
92
, pp.
503
515
.
9.
Singh
,
P. L.
,
Sarviya
,
R. M.
, and
Bhagoria
,
J. L.
,
2010
, “
Thermal Performance of Linear Fresnel Reflecting Solar Concentrator With Trapezoidal Cavity Absorbers
,”
Appl. Energy
,
87
(
2
), pp.
541
550
.
10.
Tíba
,
C.
, and
Fraidenraich
,
N.
,
2011
, “
Optical and Thermal Optimization of Stationary Non-Evacuated CPC Solar Concentrator With Fully Illuminated Wedge Receivers
,”
Renewable Energy
,
36
(
9
), pp.
2547
2553
.
11.
Branda
,
B.
,
Fraidenraich
,
N.
,
Tiba
,
C.
, and
Vilela
,
O. C.
,
2008
, “
Analytic Solutions for the Geometric and Optical Properties of Stationary Compound Parabolic Concentrators With Fully Illuminated Inverted V Receiver
,”
Sol. Energy
,
82
(
2
), pp.
132
143
.
12.
Gu
,
X.
,
Taylor
,
R. A.
,
Morrison
,
G.
, and
Rosengarten
,
G.
,
2014
, “
Theoretical Analysis of a Novel, Portable, CPC-Based Solar Thermal Collector for Methanol Reforming
,”
Appl. Energy
,
119
, pp.
467
475
.
13.
Kalogirou
,
S. A.
,
2004
, “
Solar Thermal Collectors and Applications
,”
Prog. Energy Combust. Sci.
,
30
(
3
), pp.
231
295
.
14.
Xu
,
G.
,
Song
,
G.
,
Zhu
,
X.
,
Gao
,
W.
,
Li
,
H.
, and
Quan
,
Y.
,
2015
, “
Performance Evaluation of a Direct Vapor Generation Supercritical ORC System Driven by Linear Fresnel Reflector Solar Concentrator
,”
Appl. Therm. Eng.
,
80
, pp.
196
204
.
15.
Zhu
,
G.
,
2013
, “
Development of an Analytical Optical Method for Linear Fresnel Collectors
,”
Sol. Energy
,
94
, pp.
240
252
.
16.
Spencer
,
G. H.
, and
Murty
,
M. V. R. K.
,
1962
, “
General Ray-Tracing Procedure
,”
J. Opt. Soc. Am.
,
52
(
6
), pp.
672
678
.
17.
Al Mers
,
A.
,
El Alj
,
S.
,
Ajdad
,
H.
,
Benyakhlef
,
S.
,
Bouatem
,
A.
,
Boutammacht
,
N.
, and
Merroun
,
O.
,
2014
, “
Preliminary Monte-Carlo Ray Tracing Code for Modeling Linear Fresnel Systems
,”
Fifth International Renewable Energy Congress
(
IREC
), Hammamet, Tunisia, Mar. 25–27.
18.
El Alj
,
S.
,
Al Mers
,
A.
,
Boutammachte
,
N.
,
Bouatem
,
A.
, and
Merroun
,
O.
,
2014
, “
Modeling and Simulation of a Linear Fresnel Solar Collector
,”
International Renewable and Sustainable Energy Conference
(
IRSEC
), Ouarzazate, Morocco, Oct. 17–19, p.
770
.
19.
Raithby
,
G. D.
, and
Hollands
,
K. G. T.
,
1974
, “
Laminar and Turbulent Heat Transfer by Natural Convection
,”
Int. J. Heat Mass Transfer
,
17
(
12
), pp.
1620
1622
.
20.
Veynandt
,
F.
,
2011
, “
Cogénération héliothermodynamique avec concentrateur linéaire de Fresnel: modélisation de l'ensemble du procédé
,” Doctoral dissertation, INP, Toulouse, France.
21.
Kuehn
,
T. H.
, and
Goldstein
,
R. J.
,
1976
, “
An Experimental and Theoretical Study of Natural Convection in the Annulus Between Horizontal Concentric Cylinders
,”
J. Fluid Mech.
,
74
(
4
), pp.
695
719
.
22.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2006
,
Fundamentals of Heat and Mass Transfer
,
6th ed.
,
Wiley
, Hoboken, NJ.
23.
ANSYS Workbench
,
2009
, “
FLUENT 12.0. User's Guide
,” ANSYS, Inc., Canonsburg, PA.
You do not currently have access to this content.