As offshore wind turbines supported on floating platforms extend to deep waters, the various effects involved in the dynamics, especially those resulting from the influence of moorings, become significant when predicting the overall integrated system response. The combined influence of waves and wind affect motions of the structure and induce tensile forces in mooring lines. The investigation of the system response under misaligned wind-wave conditions and the selection of appropriate mooring systems to minimize the turbine, tower, and mooring system loads is the subject of this study. We estimate the 50-year return response of a semisubmersible platform supporting a 13.2 MW wind turbine as well as mooring line forces when the system is exposed to four different wave headings with various environmental conditions (wind speeds and wave heights). Three different mooring system patterns are presented that include 3 or 6 mooring lines with different interline angles. Performance comparisons of the integrated systems may be used to define an optimal system for the selected large wind turbine.

References

References
1.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL/TP-500-38060
.https://www.nrel.gov/docs/fy09osti/38060.pdf
2.
Stewart
,
G.
,
Lackner
,
M.
,
Robertson
,
A.
,
Jonkman
,
J.
, and
Goupee
,
A.
,
2012
, “
Calibration and Validation of a FAST Floating Wind Turbine Model of the DeepCwind Scaled Tension-Leg Platform
,” National Renewable Energy Laboratory (NREL), Golden, CO, Technical Report No.
NREL/EL-500-54822 (U.S.)
.https://www.nrel.gov/docs/fy12osti/54822.pdf
3.
Jonkman
,
J. M.
, and
Musial
,
W.
,
2010
, “
Offshore Code Comparison Collaboration (OC3) for IEA Task 23 Offshore Wind Technology and Deployment
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL/TP-5000-48191
.https://www.nrel.gov/docs/fy11osti/48191.pdf
4.
Vorpahl
,
F.
,
Popko
,
W.
, and
Kaufer
,
D.
,
2011
, “
Description of a Basic Model of the ‘UpWind Reference Jacket’ for Code Comparison in the OC4 Project Under IEA Wind Annex XXX
,” Fraunhofer Institute for Wind Energy and Energy System Technology, Bremerhaven, Germany,
Technical Report
.https://www.researchgate.net/profile/Fabian_Vorpahl/publication/267233701_Description_of_a_basic_model_of_the_UpWind_reference_jacket_for_code_comparison_in_the_OC4_project_under_IEA_Wind_Annex_XXX/links/5465bf6d0cf2f5eb17ff560d/Description-of-a-basic-model-of-the-UpWind-reference-jacket-for-code-comparison-in-the-OC4-project-under-IEA-Wind-Annex-XXX.pdf
5.
Jonkman
,
J.
,
Robertson
,
A.
,
Popko
,
W.
,
Vorpahl
,
F.
,
Zuga
,
A.
,
Kohlmeier
,
M.
,
Larsen
,
T. J.
,
Yde
,
A.
,
Saeterto
,
K.
,
Okstad
,
K. M.
,
Nichols
,
J.
,
Nygaard
,
T. A.
,
Gao
,
Z.
,
Manolas
,
D.
,
Kim
,
K.
,
Yu
,
Q.
,
Shi
,
W.
,
Park
,
H.
,
Vasquez-Rojas
,
A.
,
Dubois
,
J.
,
Kaufer
,
D.
,
Thomassen
,
P.
,
de Ruiter
,
M. J.
,
Peeringa
,
J. M.
,
Zhiwen
,
H.
, and
von Waaden
,
H.
,
2012
, “
Offshore Code Comparison Collaboration Continuation (OC4), Phase I-Results of Coupled Simulations of an Offshore Wind Turbine With Jacket Support Structure
,”
The Twenty-Second International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers
, Rhodes, Greece, June 17–22, Paper No.
NREL/CP-5000-54124
.https://www.nrel.gov/docs/fy12osti/54124.pdf
6.
Griffith
,
D. T.
, and
Resor
,
B. R.
,
2011
, “
Description of Model Data for SNL 13.2-00-Land: A 13.2 MW Land-Based Turbine Model With SNL 100-00 Blades
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No.
SAND2011-9310P
.http://energy.sandia.gov/wp-content/gallery/uploads/SNL13.2-00-SAND2011-9310P.pdf
7.
Liu
,
J.
,
Thomas
,
E.
,
Manuel
,
L.
,
Griffith
,
D. T.
,
Ruehl
,
K. M.
, and
Barone
,
M.
,
2018
, “
Integrated System Design for a Large Wind Turbine Supported on a Moored Semi-Submersible Platform
,”
J. Mar. Sci. Eng.
,
6
(
1
), p.
9
.
8.
Thomas
,
E.
,
Liu
,
J.
,
Goyal
,
A.
, and
Manuel
,
L.
,
2016
, “
Long-Term Loads on a Large Offshore Wind Turbine Supported by a Semi-Submersible Platform
,”
AIAA
Paper No. AIAA 2016-1995.
9.
Fischer
,
T.
,
Rainey
,
P.
,
Bossanyi
,
E.
, and
Kühn
,
M.
,
2011
, “
Study on Control Concepts Suitable for Mitigation of Loads From Misaligned Wind and Waves on Offshore Wind Turbines Supported on Monopiles
,”
Wind Eng.
,
35
(
5
), pp.
561
573
.
10.
IEC
,
2009
, “
Wind Turbines—Part 3: Design Requirements for Offshore Wind Turbines
,” International Electrotechnical Commission, Geneva, Switzerland, Standard No.
IEC 61400-3
.https://collections.iec.ch/std/series/iec61400-3%7Bed1.0%7Den.nsf/doc.xsp?open&documentId=5A5C5AD96C9C1BD9C1257CCA0030D028
11.
Philippe
,
M.
,
Babarit
,
A.
, and
Ferrant
,
P.
,
2013
, “
Modes of Response of an Offshore Wind Turbine With Directional Wind and Waves
,”
Renewable Energy
,
49
, pp.
151
155
.
12.
Ramachandran
,
G. K.
,
Bredmose
,
H.
,
Sørensen
,
J. N.
, and
Jensen
,
J. J.
,
2014
, “
Fully Coupled Three-Dimensional Dynamic Response of a Tension-Leg Platform Floating Wind Turbine in Waves and Wind
,”
ASME J. Offshore Mech. Arct. Eng.
,
136
(
2
), p.
020901
.
13.
Agarwal
,
P.
, and
Manuel
,
L.
,
2008
, “
Extreme Loads for an Offshore Wind Turbine Using Statistical Extrapolation From Limited Field Data
,”
Wind Energy
,
11
(
6
), pp.
673
684
.
14.
Ronold
,
K.
,
Wedel-Heinen
,
J.
, and
Christensen
,
C. J.
,
1999
, “
Reliability-Based Fatigue Design of Wind-Turbine Rotor Blades
,”
Eng. Struct.
,
21
(
12
), pp.
1101
1114
.
15.
Manuel
,
L.
,
Veers
,
P. S.
, and
Winterstein
,
S. R.
,
2001
, “
Parametric Models for Estimating Wind Turbine Fatigue Loads for Design
,”
ASME J. Sol. Energy Eng.
,
123
(
4
), pp.
346
355
.
16.
Lee
,
G.
,
Byon
,
E.
,
Ntaimo
,
L.
, and
Ding
,
Y.
,
2013
, “
Bayesian Spline Method for Assessing Extreme Loads on Wind Turbines
,”
Ann. Appl. Stat.
,
7
(
4
), pp.
2034
2061
.
18.
Saranyasoontorn
,
K.
, and
Manuel
,
L.
,
2004
, “
Efficient Models for Wind Turbine Extreme Loads Using Inverse Reliability
,”
J. Wind Eng. Ind. Aerodyn.
,
92
(
10
), pp.
789
804
.
19.
Winterstein
,
S. R.
, and
Engebretsen
,
K.
,
1998
, “
Reliability-Based Prediction of Design Loads and Responses for Floating Ocean Structures
,”
17th International Conference on Offshore Mechanics and Arctic Engineering
, Lisbon, Portugal, July 5–6.
20.
Rosenblatt
,
M.
,
1952
, “
Remarks on a Multivariate Transformation
,”
Ann. Math. Stat.
,
23
(
3
), pp.
470
472
.
21.
Griffith
,
D.
,
2013
, “
The SNL100-02 Blade: Advanced Core Material Design Studies for the Sandia 100-Meter Blade
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No.
SAND2013-10162
.http://energy.sandia.gov/wp-content/gallery/uploads/dlm_uploads/1310162.pdf
22.
Lee
,
C.
, and
Newman
,
J.
,
2013
, “
WAMIT User Manual, Version 7.0
,” WAMIT, Chestnut Hill, MA, Technical Report.
23.
Masciola
,
M.
,
Jonkman
,
J.
, and
Robertson
,
A.
,
2013
, “
Implementation of a Multisegmented, Quasi-Static Cable Model
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL/CP-5000-57812
.http://cim.mcgill.ca/~mmascio1/ISOPE2013-TPC-0646.pdf
24.
Li
,
L.
,
Gao
,
Z.
, and
Moan
,
T.
,
2013
, “
Joint Environmental Data at Five European Offshore Sites for Design of Combined Wind and Wave Energy Devices
,”
ASME
Paper No. OMAE2013-10156.
You do not currently have access to this content.