The demand for affordable, environment-friendly, and reliable water conditioning systems has led to the introduction of several standalone and/or hybrid alternatives. The technology of desiccant evaporative cooling (DEC) has proven to be dependable and has gained success at places where initially it was deemed unfeasible. Today, a number of related technologies and configurations are available. Among them, solar-assisted desiccant cooling system (SADCS) offers a cheap eco-friendly alternative, especially in hybrid configurations. Most studies have investigated the performance of numerous SADCS configurations in specific climatic conditions; however, at the global- and system-level scale, no such study is available. The current study investigates five different SADCS configurations using equation-based object-oriented modeling and simulation approach in five different climatic conditions. The selected climatic conditions cover a wide range of global weather data including arid/semiarid (Karachi), dry summer tropical (Adelaide), and mesothermal (Sao Paulo, Shanghai) to continental conditions (Vienna). The performance of all selected SADCS configurations (ventilation cycle, recirculation and ventilated-recirculation cycles, dunkle and ventilated-dunkle cycle) is analyzed for specified cooling design day of the selected cities. A uniform system control strategy based on the idea of displacement distribution (ventilation) system is used for each configuration and climatic zone. By monitoring their performances based on the values of cooling capacity (CC) and coefficient of performance (COP), the best SADCS configuration is proposed for each considered climatic condition in the world. The results revealed that the climates of Vienna, Sao Paulo, and Adelaide favor the use of ventilated-dunkle cycle configuration with average COP of 0.36, 0.84, and 0.93, respectively, while ventilation cycle based on DEC configuration suits the climate of Karachi and Shanghai with an average COP of 2.32 and 2.90, respectively.

References

References
1.
IEA
,
2013
, “
World Energy Outlook
,” International Energy Agency.
2.
Ge
,
T. S.
,
Dai
,
Y. J.
, and
Wang
,
R. Z.
,
2014
, “
Review on Solar Powered Rotary Desiccant Wheel Cooling System
,”
Renewable Sustainable Energy Rev.
,
39
, pp.
476
497
.
3.
Zeng
,
D. Q.
,
Li
,
H.
,
Dai
,
Y. J.
, and
Xie
,
A. X.
, 2014, “
Numerical Analysis and Optimization of a Solar Hybrid One-Rotor Two-Stage Desiccant Cooling and Heating System
,”
Appl. Therm. Eng.
,
73
(1), pp. 474–483.
4.
La
,
D.
,
Dai
,
Y. J.
,
Li
,
Y.
,
Wang
,
R. Z.
, and
Ge
,
T. S.
,
2010
, “
Technical Development of Rotary Desiccant Dehumidification and Air Conditioning: A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
130
147
.
5.
Join
,
S.
,
Dhar
,
P. L.
, and
Kaushik
,
S. C.
,
1995
, “
Evaluation of Solid-Desiccant-Based Evaporative Cooling Cycles for Typical Hot and Humid Climates
,”
Int. J. Refrig.
,
18
(
5
), pp.
287
296
.
6.
La
,
D.
,
Dai
,
Y.
,
Li
,
Y.
,
Ge
,
T.
, and
Wang
,
R.
,
2011
, “
Case Study and Theoretical Analysis of a Solar Driven Two-Stage Rotary Desiccant Cooling System Assisted by Vapor Compression Air-Conditioning
,”
Sol. Energy
,
85
(
11
), pp.
2997
3009
.
7.
Elzahzby
,
A. M.
,
Kabeel
,
A. E.
,
Bassuoni
,
M. M.
, and
Abdelgaied
,
M.
,
2014
, “
Effect of Inter-Cooling on the Performance and Economics of a Solar Energy Assisted Hybrid Air Conditioning System With Six Stages One-Rotor Desiccant Wheel
,”
Energy Convers. Manage.
,
78
, pp.
882
896
.
8.
Li
,
H.
,
Dai
,
Y. J.
,
Kohler
,
M.
, and
Wang
,
R. Z.
,
2013
, “
Simulation and Parameter Analysis of a Two-Stage Desiccant Cooing/Heating System Driven by Solar Air Collectors
,”
Energy Convers. Manage.
,
67
, pp.
309
317
.
9.
Elzahzby
,
A. M.
,
Kabeel
,
A. E.
,
Bassuoni
,
M. M.
, and
Abdelgaied
,
M.
,
2014
, “
A Mathematical Model for Predicting the Performance of the Solar Energy Assisted Hybrid Air Conditioning System, With One-Rotor Six-Stage Rotary Desiccant Cooling System
,”
Energy Convers. Manage.
,
77
, pp.
129
142
.
10.
Ge
,
T. S.
,
Li
,
Y.
,
Dai
,
Y. J.
, and
Wang
,
R. Z.
,
2010
, “
Performance Investigation on a Novel Two-Stage Solar Driven Rotary Desiccant Cooling System Using Composite Desiccant Materials
,”
Sol. Energy
,
84
(
2
), pp.
157
159
.
11.
Ge
,
T. S.
,
Ziegler
,
F.
,
Wang
,
R. Z.
, and
Wang
,
H.
,
2010
, “
Performance Comparison Between a Solar Driven Rotary Desiccant Cooling System and Conventional Vapor Compression System (Performance Study of Desiccant Cooling)
,”
Appl. Therm. Eng.
,
30
(
6–7
), pp.
724
731
.
12.
Hong
,
H.
,
Guohui
,
F.
, and
Hongwei
,
W.
,
2012
, “
Performance Research of Solar Hybrid Desiccant Cooling Systems
,”
Procedia Environ. Sci.
,
12
(Pt. A), pp.
57
64
.
13.
Enteria
,
N.
,
Yoshino
,
H.
,
Takaki
,
R.
,
Yonekura
,
H.
,
Satake
,
A.
, and
Mochida
,
A.
,
2013
, “
First and Second Law Analyses of the Developed Solar-Desiccant Air-Conditioning System (SDACS) Operation During the Summer Day
,”
Energy Build.
,
60
, pp.
239
251
.
14.
Aprile
,
M.
,
Scoccia
,
R.
, and
Motta
,
M.
,
2012
, “
Modeling and Control Optimization of a Solar Desiccant and Evaporative Cooling System Using an Electrical Heat Pump
,”
Energy Procedia
,
30
, pp.
478
489
.
15.
Fong
,
K. F.
,
Chow
,
T. T.
,
Lee
,
C. K.
,
Lin
,
Z.
, and
Chan
,
L. S.
,
2010
, “
Advancement of Solar Desiccant Cooling System for Building Use in Subtropical Hong Kong
,”
Energy Build.
,
42
(
12
), pp.
2386
2399
.
16.
Baniyounes
,
A. M.
,
Rasul
,
M. G.
, and
Khan
,
M. M. K.
,
2013
, “
Experimental Assessment of a Solar Desiccant Cooling System for an Institutional Building in Subtropical Queensland, Australia
,”
Energy Build.
,
62
, pp.
78
86
.
17.
Baniyounes
,
A. M.
,
Rasul
,
M. G.
, and
Khan
,
M. M. K.
,
2012
, “
Analysis of Solar Desiccant Cooling System for an Institutional Building in Subtropical Queensland, Australia
,”
Renewable Sustainable Energy Rev.
,
16
(8), pp.
6423
6431
.
18.
Fong
,
K. F.
,
Lee
,
C. K.
,
Chow
,
T. T.
, and
Fong
,
A. M. L.
,
2011
, “
Investigation on Solar Hybrid Desiccant Cooling System for Commercial Premises With High Latent Cooling Load in Subtropical Hong Kong
,”
Appl. Therm. Eng.
,
31
(
16
), pp.
3393
3401
.
19.
Beccali
,
M.
,
Finocchiaro
,
P.
, and
Nocke
,
B.
,
2009
, “
Energy and Economic Assessment of Desiccant Cooling Systems Coupled With Single Glazed Air and Hybrid PV/Thermal Solar Collectors for Applications in Hot and Humid Climate
,”
Sol. Energy
,
83
(
10
), pp.
1828
1846
.
20.
Enteria
,
N.
,
Yoshino
,
H.
,
Mochida
,
A.
,
Satake
,
A.
,
Yoshie
,
R.
,
Takaki
,
R.
,
Yonekura
,
H.
,
Mitamura
,
T.
, and
Tanaka
,
Y.
,
2012
, “
Performance of Solar-Desiccant Cooling System With Silica-Gel (SiO2) and Titanium Dioxide (TiO2) Desiccant Wheel Applied in East Asian Climates
,”
Sol. Energy
,
86
(5), pp.
1261
1279
.
21.
Hamza
,
A.
, and
Ali
,
H.
,
2013
, “
Desiccant Enhanced Nocturnal Radiative Cooling-Solar Collector System for Air Comfort Application in Hot Arid Areas
,”
Sustainable Energy Technol. Assess.
,
1
, pp.
54
62
.
22.
Halliday
,
S. P.
,
Beggs
,
C. B.
, and
Sleigh
,
P. A.
,
2002
, “
The Use of Solar Desiccant Cooling in the UK: A Feasibility Study
,”
Appl. Therm. Eng.
,
22
(
12
), pp.
1327
1338
.
23.
Bourdoukan
,
P.
,
Wurtz
,
E.
, and
Joubert
,
P.
,
2009
, “
Experimental Investigation of a Solar Desiccant Cooling Installation
,”
Sol. Energy
,
83
(
11
), pp.
2059
2073
.
24.
Mavroudaki
,
P.
,
Beggs
,
C. B.
,
Sleigh
,
P. A.
, and
Halliday
,
S. P.
,
2002
, “
The Potential for Solar Powered Single-Stage Desiccant Cooling in Southern Europe
,”
Appl. Therm. Eng.
,
22
(
10
), pp.
1129
1140
.
25.
Fong
,
K. F.
,
Chow
,
T. T.
,
Lee
,
C. K.
,
Lin
,
Z.
, and
Chan
,
L. S.
,
2011
, “
Solar Hybrid Cooling System for High-Tech Offices in Subtropical Climate—Radiant Cooling by Absorption Refrigeration and Desiccant Dehumidification
,”
Energy Convers. Manage.
,
52
(
8–9
), pp.
2883
2894
.
26.
Cejudo-López
,
J. M.
,
Hernández
,
F. F.
,
Muñoz
,
F. D.
, and
Andrés
,
A. C.
,
2013
, “
The Optimization of the Operation of a Solar Desiccant Air Handling Unit Coupled With a Radiant Floor
,”
Energy Build.
,
62
, pp.
427
435
.
27.
Ruivo
,
C. R.
,
Hernández
,
F. F.
, and
López
,
J. M. C.
,
2015
, “
Influence of the Desiccant Wheel Effectiveness Method Approaches, With Fix and Variable Effectiveness Parameters, on the Performance Results of an Airport Air-Conditioning System
,”
Energy Convers. Manage.
,
94
, pp.
458
471
.
28.
Modelica Association
, 2011, “
Modelica Tools
,” Modelica Association, accessed Mar. 21, 2011, https://modelica.org/tools
29.
Dymola, 2011, “
Dynamic Modeling Laboratory
,” Dassault Systèmes, Waltham, MA, accessed on Apr. 18, 2011, http://www.3ds.com/products/catia/portfolio/Dymola
30.
ASHRAE
,
2009
,
ASHRAE Handbook: Fundamentals
,
American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc
,
Atlanta, Georgia
.
31.
Li
,
H.
,
Dai
,
Y. J.
,
Li
,
Y.
,
La
,
D.
, and
Wang
,
R. Z.
,
2012
, “
Case Study of a Two-Stage Rotary Desiccant Cooling/Heating System Driven by Evacuated Glass Tube Solar Air Collectors
,”
Energy Build.
,
47
, pp.
107
112
.
32.
Enteria
,
N.
,
Yoshino, H.
,
Satake, A.
,
Mochida, A.
,
Takaki, R.
,
Yoshie, R.
, and
Baba, S.
,
2010
, “
Development and Construction of the Novel Solar Thermal Desiccant Cooling System Incorporating Hot Water Production
,”
Appl. Energy
,
87
(
2
), pp.
478
486
.
33.
Enteria
,
N.
,
Yoshino, H.
,
Mochida, A.
,
Takaki, R.
,
Satake, A.
,
Yoshie, R.
,
Mitamura, T.
, and
Baba, S.
,
2009
, “
Construction and Initial Operation of the Combined Solar Thermal and Electric Desiccant Cooling System
,”
Sol. Energy
,
83
(
8
), pp.
1300
1311
.
34.
Ali
,
M.
,
Vukovic
,
V.
,
Sheikh
,
N. A.
, and
Ali
,
H. M.
,
2015
, “
Performance Investigation of Solid Desiccant Evaporative Cooling System Configurations in Different Climatic Zones
,”
Energy Convers. Manage.
,
97
, pp.
323
339
.
35.
ENERGYbase
, 2011, “
Energy Concept-Efficiency Through Innovation
,” ENERGYbase, London, accessed on Apr. 16, 2011 https://viennabusinessagency.at/property/project-development/energybase/
36.
Preisler
,
A.
, and
Brychta
,
M.
,
2012
, “
High Potential of Full Year Operation With Solar Driven Desiccant Evaporative Cooling Systems
,”
Energy Procedia
,
30
, pp.
668
675
.
37.
Ali
,
M.
,
Vukovic
,
V.
,
Sheikh
,
N. A.
, and
Ali
,
H. M.
,
2015
, “
Enhancement and Integration of Desiccant Evaporative Cooling System Model Under Transient Operating Conditions
,”
Appl. Therm. Eng.
,
75
, pp.
1093
1105
.
38.
Novoselac
,
A.
, and
Srebric
,
J.
,
2002
, “
A Critical Review on the Performance and Design of Combined Cooled Ceiling and Displacement Ventilation Systems
,”
Energy Build.
,
34
(
5
), pp.
497
509
.
39.
Melikov
,
A.
,
Pitchurov
,
G.
,
Naydenov
,
K.
, and
Langkilde
,
G.
,
2005
, “
Field Study on Occupant Comfort and the Office Thermal Environment in Rooms With Displacement Ventilation
,”
Indoor Air
,
15
(
3
), pp.
205
214
.
40.
Fontanella
,
G.
,
Basciotti
,
D.
,
Dubisch
,
F.
,
Judex
,
F.
,
Preisler
,
A.
,
Hettfleisch
,
C.
,
Vukovic
,
V.
, and
Selke
,
T.
,
2012
, “
Calibration and Validation of a Solar Thermal System Model in Modelica
,”
Build. Simul.
,
5
(
3
), pp.
293
300
.
41.
ASHRAE
,
2004
, “
Energy Standard for Building Except Low-Rise Residential Buildings
,” American Society of Heating, Air-Conditioning and Refrigeration Engineers, Atlanta, GA, Standard No.
90.1-2004
.
42.
ASHRAE
,
2006
, “
Weather Data for Building Design Standards
,” American Society of Heating, Air-Conditioning and Refrigeration Engineers, Atlanta, GA, Standard No.
169-2006
.
43.
EnergyPlus,
2012
, “
Weather Data
,” The National Renewable Energy Laboratory, Golden, CO, accessed Mar. 27, 2018, https://energyplus.net/weather
44.
Wetter
,
M.
,
2009
, “
A Modelica-Based Model Library for Building Energy and Control System
,”
11th International IBPSA Conference
, Glasgow, Scotland, July 27–30, pp. 652–659.
45.
Ali
,
M.
,
Vukovic
,
V.
,
Sahir
,
M. H.
, and
Basciotti
,
D.
,
2013
, “
Development and Validation of a Desiccant Wheel Model Calibrated Under Transient Operating Conditions
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
469
480
.
46.
ASHRAE
,
2007
,
ASHRAE 62.1-2007 Standard-Ventilation for Acceptable Indoor Air Quality
,
American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc
,
Atlanta
, GA.
47.
Kluttig
,
H. E.
,
Erhorn
,
H.
,
Lahmidi
,
H.
, and
Anderson
,
R.
,
2009
, “
Airtightness Requirements for High Performance Building Envelopes
,” Fraunhofer-Gesellschaft, Munich, Germany, accessed Mar. 27, 2018, http://publica.fraunhofer.de/documents/N-147543.html
48.
Hans-Martin
,
H.
,
2003
,
Solar-Assisted Air-Conditioning in Buildings: A Handbook for Planners
, Vol.
1
,
Springer
, New York.
You do not currently have access to this content.