Phase change materials (PCMs) are investigated in this study as an option to reduce the surface temperature of the photovoltaic (PV) cell during sunshine hours to enhance the electrical efficiency of the cells. For this purpose, thermal energy balance model of the PV panel is integrated with PCM enthalpy model. The simulated results of the model have been validated with experimental results from the literature. The results indicate that PCM can be effectively used for limiting the temperature rise of the PV cell, thus increasing the efficiency of the PV cell up to 10%. Peak temperature of the PV cell can be reduced from 86 °C to 57 °C during the hottest summer month. It has observed that maximum benefits can be obtained when PCM melting point is selected in such a way that there is 10–12 °C difference between melting point of PCM and average minimum ambient temperature of the hottest summer month. PCM selected in such way will also require minimum mass. In current study, PCMs with melting points of 40 °C and 44 °C provide the best result compared to the PCMs having melting points of 35 °C and 30 °C with average minimum ambient temperature of 28 °C.

References

References
1.
Islam
,
M. M.
,
Pandey
,
A. K.
,
Hasanuzzaman
,
M.
, and
Rahim
,
N. A.
,
2016
, “
Recent Progresses and Achievements in Photovoltaic-Phase Change Material Technology: A Review With Special Treatment on Photovoltaic Thermal-Phase Change Material Systems
,”
Energy Convers. Manage.
,
126
, pp.
177
204
.
2.
Browne
,
M. C.
,
Norton
,
B.
, and
McCormack
,
S. J.
,
2015
, “
Phase Change Materials for Photovoltaic Thermal Management
,”
Renewable Sustainable Energy Rev.
,
47
, pp.
762
782
.
3.
Browne
,
M. C.
,
Norton
,
B.
, and
McCormack
,
S. J.
,
2016
, “
Heat Retention of a Photovoltaic/Thermal Collector With PCM
,”
Sol. Energy
,
133
, pp.
533
548
.
4.
Waqas
,
A.
, and
Phase
,
U. D. Z.
,
2013
, “
Change Material (PCM) Storage for Free Cooling of Buildings—A Review
,”
Renewable Sustainable Energy Rev.
,
18
, pp.
607
625
.
5.
Waqas
,
A.
,
Ali
,
M.
, and
Ud Din
,
Z.
,
2017
, “
Performance Analysis of Phase-Change Material Storage Unit for Both Heating and Cooling of Buildings
,”
Int. J. Sustainable Energy
,
36
(
4
), pp.
379
397
.
6.
Maiti
,
S.
,
Banerjee
,
S.
,
Vyas
,
K.
,
Patel
,
P.
, and
Ghosh
,
P. K.
,
2011
, “
Self Regulation of Photovoltaic Module Temperature in V-Trough Using a Metal-Wax Composite Phase Change Matrix
,”
Sol. Energy
,
85
(
9
), pp.
1805
1816
.
7.
Stropnik
,
R.
, and
Stritih
,
U.
,
2016
, “
Increasing the Efficiency of PV Panel With the Use of PCM
,”
Renewable Energy
,
97
, pp.
671
679
.
8.
Kibria
,
M. A.
,
Saidur
,
R.
,
Al-Sulaiman
,
F. A.
, and
Aziz
,
M. M. A.
,
2016
, “
Development of a Thermal Model for a Hybrid Photovoltaic Module and Phase Change Materials Storage Integrated in Buildings
,”
Sol. Energy
,
124
, pp.
114
123
.
9.
Lazaro
,
A.
,
Dolado
,
P.
,
Marín
,
M.
, and
Zalba
,
B.
,
2009
, “
PCM–Air Heat Exchangers for Free-Cooling Applications in Buildings: Experimental Results of Two Real-Scale Prototypes
,”
Energy Convers. Manage.
,
50
(
3
), pp.
439
443
.
10.
Joshi
,
A. S.
, and
Tiwari
,
A.
,
2007
, “
Energy and Exergy Efficiencies of a Hybrid Photovoltaic-Thermal (PV/T) Air Collector
,”
Renewable Energy
,
32
(
13
), pp.
2223
2241
.
11.
Tiwari
,
A.
, and
Sodha
,
M. S.
,
2006
, “
Performance Evaluation of Solar PV/T System: An Experimental Validation
,”
Sol. Energy
,
80
(
7
), pp.
751
759
.
12.
Solanki
,
S. C.
,
Dubey
,
S.
, and
Tiwari
,
A.
,
2009
, “
Indoor Simulation and Testing of Photovoltaic Thermal (PV/T) Air Collectors
,”
Appl. Energy
,
86
(
11
), pp.
2421
2428
.
13.
Ho
,
C. J.
,
Tanuwijava
,
A. O.
, and
Lai
,
C. M.
,
2012
, “
Thermal and Electrical Performance of a BIPV Integrated With a Microencapsulated Phase Change Material Layer
,”
Energy Build.
,
50
, pp.
331
338
.
14.
Ji
,
J.
,
Liu
,
K.
,
Chow
,
T. T.
,
Pei
,
G.
,
He
,
W.
, and
He
,
H.
,
2008
, “
Performance Analysis of a Photovoltaic Heat Pump
,”
Appl. Energy
,
85
(
8
), pp.
680
693
.
15.
Keliang
,
L.
,
Jie
,
J.
,
Tin-Tai
,
C.
,
Gang
,
P.
,
Hanfeng
,
H.
,
Aiguo
,
J.
, and
Jichun
,
Y.
,
2009
, “
Performance Study of a Photovoltaic Solar Assisted Heat Pump With Variable-Frequency Compressor—A Case Study in Tibet
,”
Renewable Energy
,
34
(
12
), pp.
2680
2687
.
16.
Dubey
,
S.
, and
Tiwari
,
G. N.
,
2008
, “
Thermal Modeling of a Combined System of Photovoltaic Thermal (PV/T) Solar Water Heater
,”
Sol. Energy
,
82
(
7
), pp.
602
612
.
17.
Voller
,
V. R.
,
Cross
,
M.
, and
Markatos
,
N. C.
,
1987
, “
An Enthalpy Method for Convection/Diffusion Phase Change
,”
Int. J. Numer. Methods Eng.
,
24
(
1
), pp.
271
284
.
18.
Zivkovic
,
B.
, and
Fujii
,
I.
,
2001
, “
An Analysis of Isothermal Phase Change of Phase Change Material Within Rectangular and Cylindrical Containers
,”
Sol. Energy
,
70
(
1
), pp.
51
61
.
19.
Hasan
,
A.
,
McCormack
,
S. J.
,
Huang
,
M. J.
, and
Norton
,
B.
,
2010
, “
Evaluation of Phase Change Materials for Thermal Regulation Enhancement of Building Integrated Photovoltaics
,”
Sol. Energy
,
84
(
9
), pp.
1601
1612
.
20.
Bahaidarah
,
H.
,
Subhan
,
A.
,
Gandhidasan
,
P.
, and
Rehman
,
S.
,
2013
, “
Performance Evaluation of a PV (Photovoltaic) Module by Back Surface Water Cooling for Hot Climatic Conditions
,”
Energy
,
59
, pp.
445
453
.
You do not currently have access to this content.