Computational fluid dynamics (CFD) simulations of wind turbine wakes are strongly influenced by the choice of the turbulence model used to close the Reynolds-averaged Navier-Stokes (RANS) equations. A wrong choice can lead to incorrect predictions of the velocity field characterizing the wind turbine wake and, consequently, to an incorrect power estimation for wind turbines operating downstream. This study aims to investigate the influence of different turbulence models, namely the kε,kω,SSTkω, and Reynolds stress models (RSM), on the results of CFD wind turbine simulations. Their influence was evaluated by comparing the CFD results with the publicly available experimental measurements of the velocity field and turbulence quantities from the Sexbierum and Nibe wind farms. Consistent turbulence model constants were proposed for atmospheric boundary layer (ABL) and wake flows according to previous literature and appropriate experimental observations, and modifications of the derived turbulence model constants were also investigated in order to improve agreement with experimental data. The results showed that the simulations using the k–ε and k–ω turbulence models consistently overestimated the velocity and turbulence quantities in the wind turbine wakes, whereas the simulations using the shear-stress transport (SST) k–ω and RSMs could accurately match the experimental data. Results also showed that the predictions from the k–ε and k–ω turbulence models could be improved by using the modified set of turbulence coefficients.

References

References
1.
Global Wind Energy Council
,
2016
, “Global Wind Report 2015,” Global Wind Energy Council, Brussel, Belgium,
Report
.http://www.gwec.net/wp-content/uploads/vip/GWEC-Global-Wind-2015-Report_April-2016_22_04.pdf
2.
Barthelmie
,
R. J.
,
Pryor
,
S. C.
,
Frandsen
,
S. T.
,
Hansen
,
K. S.
,
Schepers
,
J. G.
,
Rados
,
K.
,
Schlez
,
W.
,
Neubert
,
A.
,
Jensen
,
L. E.
, and
Neckelmann
,
S.
,
2010
, “
Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms
,”
J. Atmos. Ocean Technol.
,
27
(
8
), pp.
1302
1317
.
3.
Vermeer
,
L. J.
,
Sørensen
,
J. N.
, and
Crespo
,
A.
,
2003
, “
Wind Turbine Wake Aerodynamics
,”
Prog. Aerosp. Sci.
,
39
(
6–7
), pp.
467
510
.
4.
Crespo
,
A.
,
Manuel
,
F.
,
Moreno
,
D.
,
Fraga
,
E.
, and
Hernández
,
J.
,
1985
, “Numerical Analysis of Wind Turbine Wakes,” Workshop on Wind Energy Application, Delphi, Greece, May 20–22, pp. 15–25.
5.
Sanderse
,
B.
,
van der Pijl
,
S. P.
, and
Koren
,
B.
,
2011
, “
Review of Computational Fluid Dynamics for Wind Turbine Wake Aerodynamics
,”
Wind Energy
,
14
(
7
), pp.
799
819
.
6.
Crespo
,
A.
, and
Hernández
,
J.
,
1989
, “
Numerical Modelling of the Flow Field in a Wind Turbine Wake
,”
Third Joint ASCE/ASME Mechanics Conference
, Forum on Turbulent Flows, San Diego, CA, July 9–12, pp. 121–127.
7.
Réthoré
,
P.-E.
,
2009
, “Wind Turbine Wake in Atmospheric Turbulence,”
Ph.D. thesis
, Aalborg University, Aalborg, Denmark.http://orbit.dtu.dk/files/4548747/ris-phd-53.pdf
8.
Cabezón
,
D.
,
Migoya
,
E.
, and
Crespo
,
A.
,
2011
, “
Comparison of Turbulence Models for the Computational Fluid Dynamics Simulation of Wind Turbine Wakes in the Atmospheric Boundary Layer
,”
Wind Energy
,
14
(
7
), pp.
909
921
.
9.
Prospathopoulos
,
J. M.
,
Politis
,
E. S.
, and
Chaviaropoulos
,
P. K.
,
2008
, “
Modelling Wind Turbine Wakes in Complex Terrain
,”
European Wind Energy Conference and Exhibition
, Brussels, Belgium, Mar. 31–Apr. 3, pp. 1–10.
10.
Prospathopoulos
,
J. M.
,
Politis
,
E. S.
,
Rados
,
K. G.
, and
Chaviaropoulos
,
P. K.
,
2011
, “
Evaluation of the Effects of Turbulence Model Enhancements on Wind Turbine Wake Predictions
,”
Wind Energy
,
14
(
2
), pp.
285
300
.
11.
El Kasmi
,
A.
, and
Masson
,
C.
,
2008
, “
An Extended k – ε Model for Turbulent Flow Through Horizontal-Axis Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
1
), pp.
103
122
.
12.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
15
(
2
), pp.
301
314
.
13.
Launder
,
B. E.
, and
Sharma
,
B. I.
,
1974
, “
Application of the Energy Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
,
1
(
2
), pp.
131
137
.
14.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
15.
Wilcox
,
D. C.
,
1994
,
Turbulence Modeling for CFD
,
2nd ed.
,
DCW Industries
, La Cañada, CA.
16.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.
17.
Durbin
,
P. A.
, and
Pettersson Reif
,
B. A.
,
2011
,
Statistical Theory and Modeling for Turbulent Flows
,
2nd ed.
,
Wiley
, Chichester, UK.
18.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
19.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
(
3
), pp.
537
566
.
20.
Speziale
,
C. B.
,
Sarkar
,
S.
, and
Gatski
,
T. B.
,
1991
, “
Modelling the Pressure-strain Correlation of Turbulence: An Invariant Dynamical Systems Approach
,”
J. Fluid Mech.
,
227
(
1
), pp.
245
272
.
21.
Gibson
,
M. M.
, and
Launder
,
B. E.
,
1978
, “
Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer
,”
J. Fluid Mech.
,
86
(
3
), pp.
491
511
.
22.
Sørensen
,
J. N.
, and
Myken
,
A.
,
1992
, “
Unsteady Actuator Disc Model for Horizontal Axis Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
39
(
1–3
), pp.
139
149
.
23.
Ammara
,
I.
,
Leclerc
,
C.
, and
Masson
,
C.
,
2002
, “
A Viscous Three-Dimensional Differential/Actuator-Disk Method for the Aerodynamic Analysis of Wind Farms
,”
ASME J. Sol. Energy Eng.
,
124
(
4
), pp.
345
356
.
24.
Réthoré
,
P.-E. M.
,
Sørensen
,
N. N.
,
Bechmann
,
A.
, and
Zhale
,
F.
,
2009
, “
Study of the Atmospheric Wake Turbulence of a CFD Actuator Disc Model
,”
European Wind Energy Conference and Exhibition
(
EWEC
), Marseille, France, Mar. 16–19.http://orbit.dtu.dk/files/3748022/2009_18.pdf
25.
Panofsky
,
H. A.
, and
Dutton
,
J. A.
,
1984
,
Atmospheric Turbulence: Models and Methods for Engineering Applications
,
Wiley
, Chichester, UK.
26.
Gryning
,
S.-E.
,
Batchvarova
,
E.
,
Brümmer
,
B.
,
Jørgensen
,
H.
, and
Larsen
,
S.
,
2007
, “
On the Extension of the Wind Profile Over Homogeneous Terrain Beyond the Surface Boundary Layer
,”
Boundary-Layer Meteorol.
,
124
(
2
), pp.
251
268
.
27.
Richards
,
P. J.
, and
Hoxey
,
R. P.
,
1993
, “
Appropriate Boundary Conditions for Computational Wind Engineering Models Using the k-Epsilon Turbulence Model
,”
J. Wind Eng. Ind. Aerodyn.
,
46–47
, pp.
145
153
.
28.
Cleijne
,
J. W.
,
1993
, “Results of Sexbierum Wind Farm; Single Wake Measurements,” TNO Institute of Environmental and Energy Technology, Apeldoorn, The Netherlands, Technical Report No.
93-082
.https://repository.tudelft.nl/view/tno/uuid:7bb5570d-e223-4c4b-9448-bec95453f061/
29.
Taylor
,
G. J.
,
1990
, “Wake Measurements on the Nibe Wind Turbines in Denmark,” National Power—Technology and Environment Center, London, Technical Report No. ETSU WN 5020.
30.
Blocken
,
B.
,
Stathopoulos
,
T.
, and
Carmeliet
,
J.
,
2007
, “
CFD Simulation of the Atmospheric Boundary Layer: Wall Function Problems
,”
Atmos. Environ.
,
41
(
2
), pp.
238
252
.
31.
van der Laan
,
M. P.
,
Sørensen
,
N. N.
,
Réthoré
,
P.-E.
,
Mann
,
J.
,
Kelly
,
M. C.
,
Troldborg
,
N.
,
Schepers
,
J. G.
, and
Machefaux
,
E.
,
2015
, “
An Improved k–ε Model Applied to a Wind Turbine Wake in Atmospheric Turbulence
,”
Wind Energy
,
18
(
5
), pp.
889
907
.
You do not currently have access to this content.