Inverse design of thickness sensitive spectrally selective pigmented coatings that are used in absorbers of solar thermal collectors is considered. The objective is to maximize collection efficiency by achieving high absorptance at solar wavelengths and low emittance at the infrared (IR) wavelengths to minimize heat loss. Radiative properties of these coatings depend on coating thickness, pigment size, concentration, and the optical properties of binder and pigment materials, and a unified radiative transfer model of the pigmented coatings is developed in order to understand the effect of these parameters on the properties. The unified model (UM) relies on Lorenz–Mie theory (LMT) for independent scattering regime in conjunction with extended Hartel theory (EHT) to incorporate the multiple scattering effects, T-matrix method (TMM) for dependent scattering, and effective medium theory (EMT) for very small particles. A simplified version of the UM (SUM) ignoring dependent scattering is also developed for improving computational efficiency. Through the solution of the radiative transfer equation by the four flux method (FFM), spectral properties are predicted. The developed model is used in conjunction with inverse design for estimating design variables yielding the desired spectral emittance of the ideal coating. The nonlinear inverse design problem is solved by optimization by using simulated annealing (SA) method that is capable of finding global minimum regardless of initial guess.

References

References
1.
Kalogirou
,
S. A.
,
2004
, “
Solar Thermal Collectors and Applications
,”
Prog. Energy Combust. Sci.
,
30
(
3
), pp.
231
295
.
2.
Mar
,
H. Y. B.
,
Lin
,
J. H.
,
Zimmer
,
P. P.
,
Peterson
,
R. E.
, and
Gross
,
J. S.
,
1975
, “Optical Coatings for Flat Plate Solar Collectors,” ERDA, Minneapolis, MN, Report No.
NSF-C-957
.
3.
Kennedy
,
C. E.
,
2002
, “Review of Mid to High Temperature Solar Selective Absorber Materials,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL/TP-520-31267
.
4.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2006
,
Solar Engineering of Thermal Processes
,
Wiley
,
Hoboken, NJ
.
5.
Peterson
,
R. E.
, and
Ramsey
,
J. W.
,
1975
, “
Thin Film Coatings in Solar Thermal Power Systems
,”
J. Vac. Sci. Technol.
,
12
(
1
), pp.
174
181
.
6.
Orel
,
B.
,
Radoczy
,
I.
, and
Orel
,
Z. C.
,
1986
, “
Organic Soot Pigmented Paint for Solar Panels: Formulation, Optical Properties and Industrial Application
,”
Sol. Wind Technol.
,
3
(
1
), pp.
45
52
.
7.
Gunde
,
M. K.
,
Logar
,
J. K.
,
Orel
,
Z. C.
, and
Orel
,
B.
,
1996
, “
Optimum Thickness Determination to Maximize the Spectral Selectivity of Black Pigmented Coatings for Solar Collectors
,”
Thin Solid Films
,
277
(
1–2
), pp.
185
191
.
8.
Orel
,
Z. C.
, and
Gunde
,
M. K.
,
2001
, “
Spectrally Selective Paint Coatings: Preparation and Characterization
,”
Sol. Energy Mater. Sol. Cells
,
68
(
3–4
), pp.
337
353
.
9.
Granqvist
,
C. G.
,
1985
, “
Spectrally Selective Coatings for Energy Efficiency and Solar Applications
,”
Phys. Scr.
,
32
(
4
), pp.
401
407
.
10.
Niklasson
,
G. A.
,
2006
, “
Modeling the Optical Properties of Nano-Particles
,”
SPIE Newsroom
,
10
(2.1200603), p. 182.
11.
Vargas
,
W. E.
, and
Niklasson
,
G. A.
,
1997
, “
Applicability Conditions of the Kubelka–Munk Theory
,”
Appl. Opt.
,
36
(
22
), pp.
5580
5586
.
12.
Vargas
,
W. E.
, and
Niklasson
,
G. A.
,
1997
, “
Generalized Method for Evaluating Scattering Parameters Used in Radiative Transfer Models
,”
J. Opt. Soc. Am.
,
14
(
9
), pp.
2243
2252
.
13.
Maheu
,
B.
,
Letoulouzan
,
J. N.
, and
Gouesbet
,
G.
,
1984
, “
Four-Flux Models to Solve the Scattering Transfer Equation in Terms of Lorentz-Mie Parameters
,”
Appl. Opt.
,
23
(
19
), pp.
3353
3362
.
14.
Vargas
,
W. E.
,
1998
, “
Generalized Four-Flux Radiative Transfer Model
,”
Appl. Opt.
,
37
(
13
), pp.
2615
2623
.
15.
Howell
,
J. R.
,
Mengüç
,
M. P.
, and
Siegel
,
R.
,
2015
,
Thermal Radiation Heat Transfer
,
6th ed.
,
CRC Press
,
Boca Raton, FL
.
16.
Vargas
,
W. E.
,
2003
, “
Optical Properties of Pigmented Coatings Taking Into Account Particle Interactions
,”
J. Quant. Spectrosc. Radiat. Transfer
,
78
(
2
), pp.
187
195
.
17.
Vargas
,
W. E.
,
Lushiku
,
E. M.
,
Niklasson
,
G. A.
, and
Nilsson
,
T. M. J.
,
1998
, “
Light Scattering Coatings: Theory and Solar Applications
,”
Sol. Energy Mater. Sol. Cells
,
54
(
1–4
), pp.
343
350
.
18.
Vargas
,
W. E.
, and
Niklasson
,
G. A.
,
2001
, “
Reflectance of Pigmented Polymer Coatings: Comparisons Between Measurements and Radiative Transfer Calculations
,”
Appl. Opt.
,
40
(
1
), pp.
85
94
.
19.
Vargas
,
W. E.
,
Greenwood
,
P.
,
Otterstedt
,
J. E.
, and
Niklasson
,
G. A.
,
2000
, “
Light Scattering in Pigmented Coatings: Experiments and Theory
,”
Sol. Energy
,
68
(
6
), pp.
553
561
.
20.
Vargas
,
W. E.
,
2000
, “
Optimization of Diffuse Reflectance of Pigmented Coatings Taking Into Account Multiple Scattering
,”
J. Appl. Phys.
,
88
(
7
), pp.
4079
4084
.
21.
Baneshi
,
M.
,
Maruyama
,
S.
,
Nakai
,
H.
, and
Komiya
,
A.
,
2009
, “
A New Approach to Optimizing Pigmented Coatings Considering Both Thermal and Aestetic Effects
,”
J. Quant. Spectrosc. Radiat. Transfer
,
110
(
3
), pp.
192
204
.
22.
Baneshi
,
M.
,
Maruyama
,
S.
, and
Komiya
,
A.
,
2011
, “
Comparison Between Aesthetic and Thermal Performances of Copper Oxide and Titanium Dioxide Nano-Particulate Coatings
,”
J. Quant. Spectrosc. Radiat. Transfer
,
112
(
7
), pp.
1197
1204
.
23.
Gonome
,
H.
,
Baneshi
,
M.
,
Okajimac
,
J.
,
Komiyac
,
A.
, and
Maruyama
,
S.
,
2014
, “
Controlling the Radiative Properties of Cool Black-Color Coatings Pigmented With CuO Submicron Particles
,”
J. Quant. Spectrosc. Radiat. Transfer
,
132
, pp.
90
98
.
24.
Yalcin
,
R. A.
, and
Erturk
,
H.
,
2011
, “
Optimization of Pigmented Coatings for Concentrating Solar Thermal Systems
,”
International Mechanical Engineering Congress and Exhibition
, Denver, CO, Nov. 11–17, pp. 1703–1713.
25.
Zhao
,
S.
, and
Wackelgard
,
E.
,
2006
, “
Optimization of Solar Absorbing Three-Layer Coatings
,”
Sol. Energy Mater. Sol. Cells
,
90
(
3
), pp.
243
261
.
26.
Etherden
,
N.
,
Tesfamichael
,
T.
,
Niklasson
,
G. A.
, and
Wackelgård
,
E.
,
2004
, “
A Theoretical Feasibility Study of Pigments for Thickness-Sensitive Spectrally Selective Paints
,”
J. Phys. D: Appl. Phys.
,
37
(
7
), pp.
1115
1122
.
27.
Gonome
,
H.
,
Okajima
,
J.
,
Komiya
,
A.
, and
Maruyama
,
S.
,
2014
, “
Experimental Evaluation of Optimization Method for Developing Ultraviolet Barrier Coatings
,”
J. Quant. Spectrosc. Radiat. Transfer
,
133
, pp.
454
463
.
28.
Howell
,
J. R.
,
Daun
,
K. J.
,
Erturk
,
H.
,
Gamba
,
M.
, and
Hosseini
,
S. M.
,
2003
, “
The Use of Inverse Methods for the Design and Control of Radiant Sources
,”
JSME Int. J., Ser. B, Fluid Therm. Eng.
,
46
(
4
), pp.
470
478
.
29.
Daun
,
K. J.
,
Erturk
,
H.
, and
Howell
,
J. R.
,
2002
, “
Inverse Methods for High Temperature Systems
,”
Arabian J. Sci. Eng.
,
27
(2C), pp.
3
48
.
30.
Brewster
,
M. Q.
, and
Tien
,
C. L.
,
1982
, “
Radiative Transfer in Packed Fluidized Beds: Dependent Versus Independent Scattering
,”
ASME J. Heat Transfer
,
104
(
4
), pp.
573
579
.
31.
Modest
,
M. F.
,
2003
,
Radiative Heat Transfer
,
2nd ed.
,
Academic Press
,
Boston, MA
.
32.
Mackowski
,
D. W.
, and
Mishchenko
,
M. I.
,
2011
, “
A Multiple Sphere T-Matrix Fortran Code for Use on Parallel Computer Clusters
,”
J. Quant. Spectrosc. Radiat. Transfer
,
112
(
13
), pp.
2182
2192
.
33.
ASTM
,
2012
, “Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface,” American Society for Testing and Materials, West Conshohocken, PA, Standard No.
ASTM G-173-03
.
34.
Kunitomo
,
T.
,
Tsuboi
,
Y.
,
Iwashita
,
S.
, and
Shafey
,
H. M.
,
1983
, “
Theoretical Study on Spectrally Selective Paint Coatings
,”
Sol. World Congr.
,
3
, pp.
1943
1947
.
35.
Tesfamichael
,
T.
,
Hoel
,
A.
,
Wäckelgård
,
E.
,
Niklasson
,
G.
,
Gunde
,
M.
, and
Orel
,
Z.
,
2001
, “
Optical Characterization and Modeling of Black Pigments Used in Thickness Sensitive Solar Selective Absorbing Paints
,”
Sol. Energy
,
69
(
Suppl. 6
), pp.
35
43
.
36.
Sadovnikov
,
S. I.
,
Kozhevnikova
,
N. S.
, and
Rempel
,
A. A.
,
2011
, “
Stability and Recrystallization of Pbs Nanoparticles
,”
Inorg. Mater.
,
47
(
8
), pp.
837
843
.
37.
Gordon
,
J.
, 2013,
Solar Energy: The State of the Art: ISES Position Papers
, Routledge, London, p.
121
.
38.
Meinecke
,
W.
, 2000, “
Parabolic Trough Collectors
,”
Renewable Energy Systems And Desalination
(Desalination and Water Resources, Vol. II), EOLSS pp. 315–377.
39.
Avriel
,
M.
,
2003
,
Nonlinear Programming Analysis and Methods
,
Dover Publications
,
Mineola, NY
.
40.
Kirkpatrick
,
S.
,
Gelatt
,
C. D.
, and
Vecchi
,
M. P.
,
1983
, “
Optimization by Simulated Annealing
,”
Science
,
220
(
4598
), pp.
671
680
.
41.
Lahtinen
,
J.
,
Myllymaki
,
P.
,
Silander
,
T.
, and
Tirri
,
H.
,
1996
, “
Empirical Comparison of Stochastic Algorithms
,”
Second Nordic Workshop on Genetic Algorithms and Their Applications
, Vaasa, Finland, Aug. 21–23, pp.
45
59.
42.
Porter
,
J. M.
,
Larsen
,
M. E.
,
Barnes
,
J. W.
, and
Howell
,
J. R.
,
2006
, “
Metaheuristic Optimization of a Discrete Array of Radiant Heaters
,”
ASME J. Heat Transfer
,
128
(
10
), pp.
1031
1040
.
43.
Bertsimas
,
D.
, and
Tsitsiklis
,
J.
,
1993
, “
Simulated Annealing
,”
Stat. Sci.
,
8
(
1
), pp.
10
15
.
44.
Laaksonen
,
K.
,
Li
,
S.-Y.
,
Puisto
,
S. R.
,
Rostedt
,
N. K. J.
,
Ala-Nissila
,
T.
,
Granqvist
,
C. G.
,
Nieminen
,
R. M.
, and
Niklasson
,
G. A.
,
2014
, “
Nanoparticles of TiO2 and VO2 in Dielectric Media: Conditions for Low Optical Scattering, and Comparison Between Effective Medium and Four-Flux Theories
,”
Sol. Energy Mater. Sol. Cells
,
130
, pp.
132
137
.
You do not currently have access to this content.