Solar tracking is a major alternative to increase the electric output of a photovoltaic (PV) module, and therefore, improves the global energy collected by PV systems. Nonetheless, solar-tracking PV systems require more resources and energy than static systems. Additionally, the presence of cloudiness and shadows from near buildings may reduce the profitability of these systems. Therefore, their feasibility must be assessed in order to justify their application. In equatorial latitudes, the sun's movement through the sky is in the zenith East–West axis. It may be advantageous, since the best tilt in such latitudes is the horizontal. In these terms, the main objective of this research is to numerically assess the performance of a PV array with solar tracking and under typical operation conditions in equatorial latitudes. For this, the assessment of the solar resource in Quito was analyzed in first place. Then, the comparison between three solar arrays was studied to evaluate the feasibility of solar tracking (two-axes tracking, horizontal one-axis tracking, and horizontal fixed). Additionally, the impact of cloudiness and shadows in the system was analyzed. The results showed that the horizontal one-axis tracking is the most beneficial option for equatorial latitudes as the two-axes tracking system only surpasses the gains of the one-axis tracking marginally. Furthermore, the use of a strategy to place the PV modules horizontally in cloudy conditions seems to be marginally advantageous. Finally, the shadows created from neighboring buildings in the East and West of the system may reduce considerably the solar irradiation on the PV-array (not the ones in the north and south).

References

References
1.
Dudley
,
B.
, and
Dale
,
S.
,
2017
, “
BP Statistical Review of World Energy June 2017
,” BP Statistical Review of World Energy, London,
Report
.
2.
IEA
,
2015
,
World Energy Outlook 2015
, International Energy Agency, Paris, France.
3.
Aleklett
,
K.
, and
Campbell
,
C. J.
,
2003
, “
The Peak and Decline of World Oil and Gas Production
,”
Miner. Energy - Raw Mater. Rep.
,
18
(
1
), pp.
5
20
.
4.
Dinçer
,
F.
,
2011
, “
The Analysis on Photovoltaic Electricity Generation Status, Potential and Policies of the Leading Countries in Solar Energy
,”
Renewable Sustainable Energy Rev.
,
15
(
1
), pp.
713
720
.
5.
Fogelberg
,
F.
,
2014
, “
Solar Powered Bike Sharing System With Electric Bikes: An Overview of the Energy System and the Technical System Design
,”
Ph.D. thesis
, Chalmers University of Technology, Göteborg, Sweden.
6.
Joshi
,
A. S.
,
Dincer
,
I.
, and
Reddy
,
B. V.
,
2009
, “
Thermodynamic Assessment of Photovoltaic Systems
,”
Sol. Energy
,
83
(
8
), pp.
1139
1149
.
7.
Neville
,
R. C.
,
1977
, “
Solar Energy Collector Orientation and Tracking Mode
,”
Sol. Energy
,
20
(
l
), pp.
7
11
.
8.
Lorenzo
,
E.
,
Pérez
,
M.
,
Ezpeleta
,
A.
, and
Acedo
,
J.
,
2002
, “
Design of Tracking Photovoltaic Systems With a Single Vertical Axis
,”
Prog. Photovolt. Res. Appl.
,
10
(
8
), pp.
533
543
.
9.
Heslop
,
S.
, and
MacGill
,
I.
,
2014
, “
Comparative Analysis of the Variability of Fixed and Tracking Photovoltaic Systems
,”
Sol. Energy
,
107
, pp.
351
364
.
10.
Cruz-Peragón
,
F.
,
Casanova-Peláez
,
P. J.
,
Díaz
,
F. A.
,
López-García
,
R.
, and
Palomar
,
J. M.
,
2011
, “
An Approach to Evaluate the Energy Advantage of Two Axes Solar Tracking Systems in Spain
,”
Appl. Energy
,
88
(
12
), pp.
5131
5142
.
11.
Şenpinar
,
A.
, and
Cebeci
,
M.
,
2012
, “
Evaluation of Power Output for Fixed and Two-Axis Tracking PVarrays
,”
Appl. Energy
,
92
, pp.
677
685
.
12.
Yilmaz
,
S.
,
Riza Ozcalik
,
H.
,
Dogmus
,
O.
,
Dincer
,
F.
,
Akgol
,
O.
, and
Karaaslan
,
M.
,
2015
, “
Design of Two Axes Sun Tracking Controller With Analytically Solar Radiation Calculations
,”
Renewable Sustainable Energy Rev.
,
43
, pp.
997
1005
.
13.
Koussa
,
M.
,
Cheknane
,
A.
,
Hadji
,
S.
,
Haddadi
,
M.
, and
Noureddine
,
S.
,
2011
, “
Measured and Modelled Improvement in Solar Energy Yield From Flat Plate Photovoltaic Systems Utilizing Different Tracking Systems and Under a Range of Environmental Conditions
,”
Appl. Energy
,
88
(
5
), pp.
1756
1771
.
14.
Mousazadeh
,
H.
,
Keyhani
,
A.
,
Javadi
,
A.
,
Mobli
,
H.
,
Abrinia
,
K.
, and
Sharifi
,
A.
,
2009
, “
A Review of Principle and Sun-Tracking Methods for Maximizing Solar Systems Output
,”
Renewable Sustainable Energy Rev.
,
13
(
8
), pp.
1800
1818
.
15.
Lubitz
,
W. D.
,
2011
, “
Effect of Manual Tilt Adjustments on Incident Irradiance on Fixed and Tracking Solar Panels
,”
Appl. Energy
,
88
(
5
), pp.
1710
1719
.
16.
Belhaouas
,
N.
,
Cheikh
,
M.-S. A.
,
Agathoklis
,
P.
,
Oularbi
,
M.-R.
,
Amrouche
,
B.
,
Sedraoui
,
K.
, and
Djilali
,
N.
,
2017
, “
PV Array Power Output Maximization Under Partial Shading Using New Shifted PV Array Arrangements
,”
Appl. Energy
,
187
, pp.
326
337
.
17.
Tian
,
H.
,
Mancilla-David
,
F.
,
Ellis
,
K.
,
Muljadi
,
E.
, and
Jenkins
,
P.
,
2013
, “
Determination of the Optimal Configuration for a Photovoltaic Array Depending on the Shading Condition
,”
Sol. Energy
,
95
, pp.
1
12
.
18.
Kelly
,
N. A.
, and
Gibson
,
T. L.
,
2009
, “
Improved Photovoltaic Energy Output for Cloudy Conditions With a Solar Tracking System
,”
Sol. Energy
,
83
(
11
), pp.
2092
2102
.
19.
Guillon
,
L.
, and
Rousse
,
D.
,
2015
, “
An Experimental Validation of the Concept Critical Solar Radiation for Solar
,”
Int. J. Appl. Sci. Technol.
,
5
(
3
), pp.
1
11
.
20.
Quesada
,
G.
,
Guillon
,
L.
,
Rousse
,
D. R.
,
Mehrtash
,
M.
,
Dutil
,
Y.
, and
Paradis
,
P. L.
,
2015
, “
Tracking Strategy for Photovoltaic Solar Systems in High Latitudes
,”
Energy Convers. Manage.
,
103
, pp.
147
156
.
21.
Quinn
,
S. W.
,
2017
, “
Energy Gleaning for Extracting Additional Energy and Improving the Efficiency of 2-Axis Time-Position Tracking Photovoltaic Arrays Under Variably Cloudy Skies
,”
Sol. Energy
,
148
, pp.
25
35
.
22.
Ranalli
,
J.
,
Vitagliano
,
R.
,
Notaro
,
M.
, and
Starling
,
D. J.
,
2017
, “
Sensitivity of Shading Calculations to Horizon Uncertainty
,”
Sol. Energy
,
144
, pp.
399
410
.
23.
Bakhshi
,
R.
, and
Sadeh
,
J.
,
2016
, “
A Comprehensive Economic Analysis Method for Selecting the PV Array Structure in Grid-Connected Photovoltaic Systems
,”
Renewable Energy
,
94
, pp.
524
536
.
24.
NSRDB,
2017
, “National Solar Radiation Database,” National Renewable Energy, Laboratory, Golden, CO, accessed Feb. 6, 2018, https://nsrdb.nrel.gov/nsrdb-viewer
25.
Sengupta
,
M.
,
Habte
,
A.
,
Kurtz
,
S.
,
Dobos
,
A.
,
Wilbert
,
S.
,
Lorenz
,
E.
,
Stoffel
,
T.
,
Renné
,
D.
,
Gueymard
,
C.
,
Myers
,
D.
,
Wilcox
,
S.
,
Blanc
,
P.
, and
Perez
,
R.
,
2015
, “
Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-5D00-63112
.
26.
Raush
,
J.
,
Chambers
,
T.
,
Russo
,
B.
, and
Crump
,
K.
,
2016
, “
Assessment of Local Solar Resource Measurement and Predictions in South Louisiana
,”
Energy, Sustainability Soc.
,
6
(
1
), p. 18.
27.
NREL
,
2017
, “System Advisor Model (SAM),” National Renewable Energy, Laboratory, Golden, CO, accessed Feb. 6, 2018, https://sam.nrel.gov/
28.
J.
Duffie
,
J.
, and
W.
Beckman
.,
W.
,
2006
,
Solar Engineering of Thermal Processes
,
3rd ed.
,
Wiley
,
Hoboken, NJ
.
29.
Deline
,
C.
,
Dobos
,
A.
,
Janzou
,
S.
,
Meydbray
,
J.
, and
Donovan
,
M.
,
2013
, “
A Simplified Model of Uniform Shading in Large Photovoltaic Arrays
,”
Sol. Energy
,
96
, pp.
274
282
.
30.
Orgill
,
J. F.
, and
Hollands
,
K. G. T.
,
1977
, “
Correlation Equation for Hourly Diffuse Radiation on a Horizontal Surface
,”
Sol. Energy
,
19
(
4
), pp.
357
359
.
You do not currently have access to this content.