This work deals with wind turbine wakes in complex terrain. The test case is a cluster of four 2.3 MW wind turbines, sited in a very complex terrain. Their performances are studied through supervisory control and data acquisition (SCADA) data, suggesting a relevant role of the terrain in distorting the wake of the upstream turbines. The experimental evidences stimulate a deeper comprehension through numerical modeling: computational fluid dynamics (CFD) simulations are run, using the Reynolds-averaged Navier–Stokes (RANS) formulation. A novel way of elaborating the output of the simulations is proposed, providing metrics for quantifying the three-dimensional (3D) evolution of the wake. The main outcome of the numerical analysis is that the terrain distorts the wind flow so that the wake profile is severely asymmetric with respect to the lateral displacement. Further, the role of orography singularities is highlighted in dividing the wake front, thus inducing faster wake recovery with respect to flat terrain. This interpretation is confirmed by SCADA data analysis.

References

References
1.
Cheng
,
P. W.
,
2013
, “
Onshore Wind Energy
,”
Transition to Renewable Energy System
, Wiley, Weinheim, Germany, pp.
241
264
.
2.
Barthelmie
,
R. J.
,
Hansen
,
K.
,
Frandsen
,
S. T.
,
Rathmann
,
O.
,
Schepers
,
J.
,
Schlez
,
W.
,
Phillips
,
J.
,
Rados
,
K.
,
Zervos
,
A.
,
Politis
,
E.
, and
Chaviaropoulos, P. K.
,
2009
, “
Modelling and Measuring Flow and Wind Turbine Wakes in Large Wind Farms Offshore
,”
Wind Energy
,
12
(
5
), pp.
431
444
.
3.
Barthelmie
,
R. J.
, and
Jensen
,
L.
,
2010
, “
Evaluation of Wind Farm Efficiency and Wind Turbine Wakes at the Nysted Offshore Wind Farm
,”
Wind Energy
,
13
(
6
), pp.
573
586
.
4.
Hansen
,
K. S.
,
Barthelmie
,
R. J.
,
Jensen
,
L. E.
, and
Sommer
,
A.
,
2012
, “
The Impact of Turbulence Intensity and Atmospheric Stability on Power Deficits Due to Wind Turbine Wakes at Horns Rev Wind Farm
,”
Wind Energy
,
15
(
1
), pp.
183
196
.
5.
Crasto
,
G.
,
Gravdahl
,
A.
,
Castellani
,
F.
, and
Piccioni
,
E.
,
2012
, “
Wake Modeling With the Actuator Disc Concept
,”
Energy Procedia
,
24
, pp.
385
392
.
6.
Moreno
,
P.
,
Gravdahl
,
A.
, and
Romero
,
M.
,
2003
, “
Wind Flow Over Complex Terrain: Application of Linear and CFD Models
,” European Wind Energy Conference and Exhibition (
EWEC
), Madrid, Spain, June 16–19, pp.
16
19
.
7.
Lee
,
M.
,
Lee
,
S.
,
Hur
,
N.
, and
Choi
,
C.
,
2010
, “
A Numerical Simulation of Flow Field in a Wind Farm on Complex Terrain
,”
Wind Struct.
,
13
(
4
), pp. 375–383.
8.
Rodrigo
,
J.
,
Gancarski
,
P.
,
Arroyo
,
R.
,
Moriarty
,
P.
,
Chuchfield
,
M.
,
Naughton
,
J.
,
Hansen
,
K.
,
Machefaux
,
E.
,
Koblitz
,
T.
,
Maguire
,
E.
,
Castellani
,
F.
,
Terzi
,
L.
,
Breton
,
S. P.
,
Ueda
,
Y.
,
Prospathopoulos
,
J.
,
Oxley
,
G. S.
,
Peralta
,
C.
,
Zhang
,
X.
, and
Witha
,
B.
,
2014
, “
IEA-Task 31 Wakebench: Towards a Protocol for Wind Farm Flow Model Evaluation—Part 1: Flow-Over-Terrain Models
,”
J. Phys.: Conf. Ser.
,
524
(Conf. 1), p.
012105
.
9.
Dhunny
,
A.
,
Lollchund
,
M.
, and
Rughooputh
,
S.
,
2017
, “
Wind Energy Evaluation for a Highly Complex Terrain Using Computational Fluid Dynamics (CFD)
,”
Renewable Energy
,
101
, pp.
1
9
.
10.
Segalini
,
A.
,
2017
, “
Linearized Simulation of Flow Over Wind Farms and Complex Terrains
,”
Philos. Trans. R. Soc. A
,
375
(
2091
), p.
20160099
.
11.
Bitsuamlak
,
G.
,
Stathopoulos
,
T.
, and
Bédard
,
C.
,
2004
, “
Numerical Evaluation of Wind Flow Over Complex Terrain: Review
,”
J. Aerosp. Eng.
,
17
(
4
), pp.
135
145
.
12.
Prospathopoulos
,
J.
,
Politis
,
E.
,
Chaviaropoulos
,
P.
,
Rados
,
K.
,
Schepers
,
J.
,
Cabezón Martínez
,
D.
,
Hansen
,
K.
, and
Barthelmie
,
R.
,
2010
, “
CFD Modelling of Wind Farms in Flat and Complex Terrain
,” European Wind Energy Conference and Exhibition (
EWEC
), Warsaw, Poland, Apr. 20–24, pp. 158–188.
13.
Politis
,
E. S.
,
Prospathopoulos
,
J.
,
Cabezon
,
D.
,
Hansen
,
K. S.
,
Chaviaropoulos
,
P.
, and
Barthelmie
,
R. J.
,
2012
, “
Modeling Wake Effects in Large Wind Farms in Complex Terrain: The Problem, the Methods and the Issues
,”
Wind Energy
,
15
(
1
), pp.
161
182
.
14.
Subramanian
,
B.
,
Chokani
,
N.
, and
Abhari
,
R.
,
2016
, “
Aerodynamics of Wind Turbine Wakes in Flat and Complex Terrains
,”
Renewable Energy
,
85
, pp.
454
463
.
15.
Hansen
,
K. S.
,
Larsen
,
G. C.
,
Menke
,
R.
,
Vasiljevic
,
N.
,
Angelou
,
N.
,
Feng
,
J.
,
Zhu
,
W. J.
,
Vignaroli
,
A.
,
Liu, W.
,
Xu
,
C.
, and
Shen
,
W. Z.
,
2016
, “
Wind Turbine Wake Measurement in Complex Terrain
,”
J. Phys.: Conf. Ser.
,
753
, p.
032013
.
16.
Hyvärinen
,
A.
, and
Segalini
,
A.
,
2017
, “
Effects From Complex Terrain on Wind-Turbine Performance
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051205
.
17.
Hyvärinen
,
A.
, and
Segalini
,
A.
,
2017
, “
Qualitative Analysis of Wind-Turbine Wakes Over Hilly Terrain
,”
J. Phys.: Conf. Ser.
,
854
(Conf. 1), p. 012023.
18.
Lutz
,
T.
,
Schulz
,
C.
,
Letzgus
,
P.
, and
Rettenmeier
,
A.
,
2017
, “
Impact of Complex Orography on Wake Development: Simulation Results for the Planned Windfors Test Site
,”
J. Phys.: Conf. Ser.
,
854
(Conf. 1), p. 012029.
19.
Porté-Agel
,
F.
,
Wu
,
Y.-T.
,
Lu
,
H.
, and
Conzemius
,
R. J.
,
2011
, “
Large-Eddy Simulation of Atmospheric Boundary Layer Flow Through Wind Turbines and Wind Farms
,”
J. Wind Eng. Ind. Aerodyn.
,
99
(
4
), pp.
154
168
.
20.
Zhong
,
H.
,
Du
,
P.
,
Tang
,
F.
, and
Wang
,
L.
,
2015
, “
Lagrangian Dynamic Large-Eddy Simulation of Wind Turbine Near Wakes Combined With an Actuator Line Method
,”
Appl. Energy
,
144
, pp.
224
233
.
21.
Berg
,
J.
,
Troldborg
,
N.
,
Sørensen
,
N.
,
Patton
,
E.
, and
Sullivan
,
P.
,
2017
, “
Large-Eddy Simulation of Turbine Wake in Complex Terrain
,”
J. Phys.: Conf. Ser.
,
854
(Conf. 1), p. 012003.
22.
Murali
,
A.
, and
Rajagopalan
,
R.
,
2017
, “
Numerical Simulation of Multiple Interacting Wind Turbines on a Complex Terrain
,”
J. Wind Eng. Ind. Aerodyn.
,
162
, pp.
57
72
.
23.
Castellani
,
F.
,
Astolfi
,
D.
,
Mana
,
M.
,
Piccioni
,
E.
,
Becchetti
,
M.
, and
Terzi
,
L.
,
2017
, “
Investigation of Terrain and Wake Effects on the Performance of Wind Farms in Complex Terrain Using Numerical and Experimental Data
,”
Wind Energy
,
20
(7), pp.
1277
1289
.
24.
Bastankhah
,
M.
, and
Porté-Agel
,
F.
,
2016
, “
Experimental and Theoretical Study of Wind Turbine Wakes in Yawed Conditions
,”
J. Fluid Mech.
,
806
, pp.
506
541
.
25.
Bowen
,
A. J.
, and
Mortensen
,
N. G.
,
1996
, “
Exploring the Limits of Wasp the Wind Atlas Analysis and Application Program
,” European Wind Energy Conference and Exhibition (
EWEC
), Goteborg, Sweden, May 20–24, pp.
584
587
.
26.
Gasch
,
R.
, and
Twele
,
J.
,
2011
,
Wind Power Plants: Fundamentals, Design, Construction and Operation
,
Springer Science & Business Media
, Berlin.
27.
Astolfi
,
D.
,
Castellani
,
F.
,
Scappaticci
,
L.
, and
Terzi
,
L.
,
2017
, “
Diagnosis of Wind Turbine Misalignment Through Scada Data
,”
Diagnostyka
,
18
(
1
), pp.
17
24
.
28.
Castellani
,
F.
,
Astolfi
,
D.
,
Burlando
,
M.
, and
Terzi
,
L.
,
2015
, “
Numerical Modelling for Wind Farm Operational Assessment in Complex Terrain
,”
J. Wind Eng. Ind. Aerodyn.
,
147
, pp.
320
329
.
29.
Castellani
,
F.
,
Astolfi
,
D.
,
Piccioni
,
E.
, and
Terzi
,
L.
,
2015
, “
Numerical and Experimental Methods for Wake Flow Analysis in Complex Terrain
,”
J. Phys.: Conf. Ser.
,
625
(Conf. 1), p.
012042
.
30.
Peralta
,
C.
,
Nugusse
,
H.
,
Kokilavani
,
S.
,
Schmidt
,
J.
, and
Stoevesandt
,
B.
,
2014
, “
Validation of the Simplefoam (RANS) Solver for the Atmospheric Boundary Layer in Complex Terrain
,”
ITM Web Conf.
,
2
, p.
01002
.
31.
Abdi
,
D. S.
, and
Bitsuamlak
,
G. T.
,
2014
, “
Wind Flow Simulations on Idealized and Real Complex Terrain Using Various Turbulence Models
,”
Adv. Eng. Software
,
75
, pp.
30
41
.
32.
Réthoré
,
P.-E. M.
,
Sørensen
,
N. N.
, and
Zahle
,
F.
,
2010
, “
Validation of an Actuator Disc Model
,” European Wind Energy Conference and Exhibition (
EWEC
), Warsaw, Poland, Apr. 20–23, pp. 3459–3469.
33.
Castellani
,
F.
, and
Vignaroli
,
A.
,
2013
, “
An Application of the Actuator Disc Model for Wind Turbine Wakes Calculations
,”
Appl. Energy
,
101
, pp.
432
440
.
34.
Frandsen
,
S.
,
Barthelmie
,
R.
,
Pryor
,
S.
,
Rathmann
,
O.
,
Larsen
,
S.
,
Højstrup
,
J.
, and
Thøgersen
,
M.
,
2006
, “
Analytical Modelling of Wind Speed Deficit in Large Offshore Wind Farms
,”
Wind Energy
,
9
(
1–2
), pp.
39
53
.
35.
Castellani
,
F.
,
Astolfi
,
D.
,
Terzi
,
L.
,
Hansen
,
K.
, and
Rodrigo
,
J.
,
2014
, “
Analysing Wind Farm Efficiency on Complex Terrains
,”
J. Phys.: Conf. Ser.
,
524
(Conf. 1), p.
012142
.
36.
Nedjari
,
H. D.
,
Guerri
,
O.
, and
Saighi
,
M.
,
2017
, “
CFD Wind Turbines Wake Assessment in Complex Topography
,”
Energy Convers. Manage.
,
138
, pp.
224
236
.
You do not currently have access to this content.