This research demonstrates scale-up studies with the development of concentrating and nonconcentrating solar reactors employing suspended and supported TiO2 for the degradation of herbicide isoproturon (IPU) with total working volume of 6 L. Novel cement beads were used as support material for fixing the catalyst particles. In the case of nonconcentrating slurry reactor, 85% degradation of IPU was achieved after 3 h of treatment with four number of catalyst recycling, whereas nonconcentrating fixed-bed reactor using TiO2 immobilized cement beads took relatively more time (10 h) for the degradation of IPU (65%) due to mass transfer limitations, but it overcame the implication of catalyst filtration post-treatment. The immobilized catalyst was successfully recycled for ten times boosting its commercial applications. High photon flux with concentrating parabolic trough collector (PTC) using fixed catalysis approach with same immobilized catalyst substantially reduced the treatment time to 4 h for achieving 91% degradation of IPU. Working and execution of pilot-scale reactors are very fruitful to extend these results for a technology development with the present leads.

References

1.
Kuster
,
M.
,
de Alda
,
M. J. L.
,
Hernando
,
M. D.
,
Petrovic
,
M.
,
Martín-Alonso
,
J.
, and
Barceló
,
D.
,
2008
, “
Analysis and Occurrence of Pharmaceuticals, Estrogens, Progestogens and Polar Pesticides in Sewage Treatment Plant Effluents, River Water and Drinking Water in the Llobregat River Basin (Barcelona, Spain)
,”
J. Hydrol.
,
358
(1–2), pp.
112
123
.
2.
Giri
,
A. S.
, and
Golder
,
A. K.
,
2014
, “
Fenton, Photo-Fenton, H2O2 Photolysis, and TiO2 Photocatalysis for Dipyrone Oxidation: Drug Removal, Mineralization, Biodegradability, and Degradation Mechanism
,”
Ind. Eng. Chem. Res.
,
53
(4), pp.
1351
1358
.
3.
Konstaninou
,
I. K.
, and
Albanis
,
T. A.
,
2003
, “
Photocatalytic Transformation of Pesticides in Aqueous Titanium Dioxide Suspensions Using Artificial and Solar Light: Intermediates and Degradation Pathways
,”
Appl. Catal. B
,
42
(4), pp.
319
335
.
4.
Teoh
,
W. Y.
,
Scott
,
J. A.
, and
Amal
,
R.
,
2012
, “
Progress in Heterogeneous Photocatalysis: From Classical Radical Chemistry to Engineering Nanomaterials and Solar Reactors
,”
J. Phys. Chem. Lett.
,
3
(5), pp.
629
639
.
5.
Perez-Estrad
,
L.
,
Malato
,
S.
,
Gernjak
,
W.
,
Aguera
,
A.
,
Thurman
,
E.
,
Ferrer
,
I.
, and
Fernandez-Alba
,
A.
,
2005
, “
Photo-Fenton Degradation of Diclofenac: Identification of Main Intermediates and Degradation Pathway
,”
Environ. Sci. Technol.
,
39
(21), pp.
8300
8306
.
6.
Vela
,
N.
,
Fenoll
,
J.
,
Garrido
,
I.
,
Navarro
,
G.
,
Gambín
,
M.
, and
Navarro
,
S.
,
2015
, “
Photocatalytic Mitigation of Triazinone Herbicide Residues Using Titanium Dioxide in Slurry Photoreactor
,”
Catal. Today
,
252
, pp.
70
77
.
7.
Motegh
,
M.
,
Ommen
,
J. R. V.
,
Appel
,
P. W.
, and
Kreutzer
,
M. T.
,
2014
, “
Scale-Up Study of a Multiphase Photocatalytic Reactor—Degradation of Cyanide in Water Over TiO2
,”
Environ. Sci. Technol.
,
48
(3), pp.
1574
1581
.
8.
Gerven
,
T. V.
,
Mul
,
G.
,
Moulijn
,
J.
, and
Stankiewicz
,
A.
,
2007
, “
A Review of Intensification of Photocatalytic Processes
,”
Chem. Eng. Process.
,
46
(9), pp.
781
789
.
9.
Li
,
D.
,
Xiong
,
K.
,
Li
,
W.
,
Yang
,
Z.
,
Liu
,
C.
,
Feng
,
X.
, and
Lu
,
X.
,
2010
, “
Comparative Study in Liquid-Phase Heterogeneous Photocatalysis: Model for Photoreactor Scale-Up
,”
Ind. Eng. Chem. Res
,
49
(18), pp.
8397
8405
.
10.
Mueses
,
M. A.
,
Machuca-Martinez
,
F.
, and
Puma
,
G. L.
,
2013
, “
Effective Quantum Yield and Reaction Rate Model for Evaluation of Photocatalytic Degradation of Water Contaminants in Heterogeneous Pilot-Scale Solar Photoreactors
,”
Chem. Eng. J
,
215–216
, pp.
937
947
.
11.
Rodriguez
,
E. M.
,
Fernandez
,
G.
,
Alvarez
,
P. M.
, and
Beltran
,
F. J.
,
2012
, “
TiO2 and Fe (III) Photocatalytic Ozonation Processes of a Mixture of Emergent Contaminants of Water
,”
Water Res.
,
46
(1), pp.
152
166
.
12.
Chan
,
A. H.
,
Chan
,
C. K.
,
Barford
,
J. P.
, and
Porter
,
J. F.
,
2003
, “
Solar Photocatalytic Thin Film Cascade Reactor for Treatment of Benzoic Acid Containing Wastewater
,”
Water Res
,
37
(5), pp.
1125
1135
.
13.
Adishkumar
,
S.
,
Kanmani
,
S.
,
Rajesh Banu
,
J.
, and
Tae Yeom
,
I.
,
2016
, “
Evaluation of Bench-Scale Solar Photocatalytic Reactors for Degradation of Phenolic Wastewaters
,”
Desalin. Water Treat.
,
57
(36), pp.
16862
16870
.
14.
Bandala
,
E. R.
,
Gelover
,
S.
,
Leal
,
T.
,
Arancibia
,
C.
,
Jiménez
,
A.
, and
Estrada
,
C.
,
2002
, “
Solar Photocatalytic Degradation of Aldrin
,”
Catal. Today
,
76
(2–4), pp.
189
199
.
15.
Gora
,
A.
,
Toepfer
,
B.
,
Puddu
,
V.
, and
Puma
,
G. L.
,
2006
, “
Photocatalytic Oxidation of Herbicides in Single-Component and Multicomponent Systems: Reaction Kinetics Analysis
,”
Appl. Catal. B
,
65
(1–2), pp.
1
10
.
16.
Augugliaro
,
V.
,
Litter
,
M.
,
Palmisano
,
L.
, and
Soria
,
J.
,
2006
, “
The Combination of Heterogeneous Photocatalysis With Chemical and Physical Operations: A Tool for Improving the Photoprocess Performance
,”
J. Photochem. Photobiol. C
,
7
(4), pp.
127
144
.
17.
Mahmoodi
,
N. M.
,
Arami
,
M.
, and
Limaeei
,
N. Y.
,
2006
, “
Photocatalytic Degradation of Triazinic Ring-Containing Azo Dye (Reactive Red 198) by Using Immobilized TiO2 Photoreactor: Bench Scale Study
,”
J. Hazard. Mater.
,
133
(1–3), pp.
113
118
.
18.
Verma
,
A.
,
Dixit
,
D.
,
Toor
,
A.
, and
Srivastava
,
J.
,
2015
, “
Heterogeneous Photocatalytic Degradation of 2‐Chloro‐4‐Nitrophenol Using Slurry and Fixed Bed Reactor
,”
Environ. Prog. Sustainable Energy
,
34
(2), pp.
380
386
.
19.
Spasiano
,
D.
,
Marotta
,
R.
,
Malato
,
S.
,
Fernandez-Ibañez
,
P.
, and
Di Somma
,
I.
,
2015
, “
Solar Photocatalysis: Materials, Reactors, Some Commercial, and Pre-Industrialized Applications. A Comprehensive Approach
,”
Appl. Catal. B
,
170–171
, pp.
90
123
.
20.
Alpert
,
D. J.
,
Sprung
,
J. L.
,
Pacheco
,
J. E.
,
Prairie
,
M. R.
,
Reilly
,
H. E.
,
Milne
,
T. A.
, and
Nimlos
,
M. R.
,
1991
, “
Sandia National Laboratories' Work in Solar Detoxification of Hazardous Wastes
,”
Sol. Energy Mater.
,
24
(1–4), pp.
594
607
.
21.
Parra
,
S.
,
Sarria
,
V.
,
Malato
,
S.
,
Péringer
,
P.
, and
Pulgarin
,
C.
,
2000
, “
Photochemical Versus Coupled Photochemical–Biological Flow System for the Treatment of Two Biorecalcitrant Herbicides: Metobromuron and Isoproturon
,”
Appl. Catal. B
,
27
(3), pp.
153
168
.
22.
Robert
,
D.
,
Piscopo
,
A.
,
Heintz
,
O.
, and
Weber
,
J. V.
,
1999
, “
Photocatalytic Detoxification With TiO2 Supported on Glass-Fibre by Using Artificial and Natural Light
,”
Catal. Today
,
54
(2–3), pp.
291
296
.
23.
Fernandez-Ibañez
,
P.
,
Malato
,
S.
, and
Enea
,
O.
,
1999
, “
Photoelectrochemical Reactors for the Solar Decontamination of Water
,”
Catal. Today
,
54
(2–3), pp.
329
339
.
24.
Milow
,
B.
,
Blanco
,
J.
,
Fernández
,
P.
,
Malato
,
S.
,
Richter
,
C.
,
Funken
,
K. H.
, and
Sattler
,
C.
,
1999
, “
Photocatalytic Detoxification of Contaminated Water
,”
REWAS'99: Global Symposium on Recycling, Waste Treatment and Clean Technology
, San Sebastián, Spain, Sept. 5–9, pp.
1989
1998
.
25.
McCullagh
,
C.
,
Skillen
,
N.
,
Adams
,
M.
, and
Robertson
,
P. K.
,
2011
, “
Photocatalytic Reactors for Environmental Remediation: A Review
,”
J. Chem. Technol. Biotechnol.
,
86
(8), pp.
1002
1017
.
26.
Dupas
,
S.
,
Scribe
,
P.
,
Etcheber
,
H.
, and
Saliot
,
A.
,
1995
, “
Phenylurea and Triazine Herbicides in the Garonne River (France) During High Flood and Low Water Periods
,”
Int. J. Environ. Anal. Chem.
,
58
(1–4), pp.
397
409
.
27.
Spliid
,
N. H.
, and
Koppen
,
B.
,
1998
, “
Occurrence of Pesticides in Danish Shallow Ground Water
,”
Chemosphere
,
37
(7), pp.
1307
1316
.
28.
Nitschke
,
L.
, and
Schüssler
,
W.
,
1998
, “
Surface Water Pollution by Herbicides From Effluents of Waste Water Treatment Plants
,”
Chemosphere
,
36
(1), pp.
35
41
.
29.
Verma
,
A.
,
Prakash
,
N. T.
, and
Toor
,
A. P.
,
2014
, “
An Efficient TiO2 Coated Immobilized System for the Degradation Studies of Herbicide Isoproturon: Durability Studies
,”
Chemosphere
,
109
, pp.
7
13
.
30.
Verma
,
A.
,
Toor
,
A. P.
, and
Prakash
,
N. T.
,
2014
, “
Photocatalytic Degradation of Herbicide Isoproturon in TiO2 Aqueous Suspensions: Study of Reaction Intermediates and Degradation Pathways
,”
Environ. Prog. Sustainable Energy
,
33
(2), pp.
402
409
.
31.
Toor
,
A. P.
,
Verma
,
A.
,
Singh
,
V.
,
Jotshi
,
C. K.
, and
Bajpai
,
P. K.
,
2006
, “
Photocatalytic Degradation of Direct Yellow 12 Dye Using UV/TiO2 in a Shallow Pond Slurry Reactor
,”
Dyes Pigm.
,
68
(1), pp.
53
60
.
32.
APHA
,
1992
, “
Standard Methods for the Examination of Water and Wastewater
,” 19th ed., American Public Health Association, Washington, DC, Standard Method No. 4500-C (18th ed.).
33.
APHA
,
1992
, “
Standard Methods for the Examination of Water and Wastewater
,” 19th ed., American Public Health Association, Washington, DC, Standard Method No. 5220-C (18th ed.).
34.
Harp
,
D. L.
,
2009
, “
Total Organic Carbon (Direct Method)
,” U.S. Patent No. 6,368,870.
35.
Malato
,
S.
,
Blanco
,
J.
,
Vidal
,
A.
, and
Richter
,
C.
,
2002
, “
Photocatalysis With Solar Energy at a Pilot-Plant Scale: An Overview
,”
Appl. Catal. B
,
37
(1), pp.
1
15
.
36.
Reddy
,
K. S.
, and
Ravikumar
,
K.
,
2012
, “
Solar Collector Field Design and Viability Analysis of Stand-Alone Parabolic Trough Power Plants for Indian Conditions
,”
Energy Sustainable Dev.
,
16
(4), pp.
456
470
.
37.
Arasu
,
V.
, and
Sornakumar
,
T.
,
2007
, “
Design, Manufacture and Testing of Fiberglass Reinforced Parabola Trough for Parabolic Trough Solar Collectors
,”
Sol. Energy
,
81
(10), pp.
1273
1279
.
You do not currently have access to this content.