A method for inverse design of horizontal axis wind turbines (HAWTs) is presented in this paper. The direct solver for aerodynamic analysis solves the Reynolds-averaged Navier–Stokes (RANS) equations, where the effect of the turbine rotor is modeled as momentum sources using the actuator disk model (ADM); this approach is referred to as RANS/ADM. The inverse problem is posed as follows: for a given selection of airfoils, the objective is to find the blade geometry (described as blade twist and chord distributions) which realizes the desired turbine aerodynamic performance at the design point; the desired performance is prescribed as angle of attack (α) and axial induction factor (a) distributions along the blade. An iterative approach is used. An initial estimate of blade geometry is used with the direct solver (RANS/ADM) to obtain α and a. The differences between the calculated and desired values of α and a are computed and a new estimate for the blade geometry (chord and twist) is obtained via nonlinear least squares regression using the trust-region-reflective (TRF) method. This procedure is continued until the difference between the calculated and the desired values is within acceptable tolerance. The method is demonstrated for conventional, single-rotor HAWTs and then extended to multirotor, specifically dual-rotor wind turbines (DRWT). The TRF method is also compared with the multidimensional Newton iteration method and found to provide better convergence when constraints are imposed in blade design, although faster convergence is obtained with the Newton method for unconstrained optimization.

References

References
1.
Lee
,
S.
,
2015
, “
Inverse Design of Horizontal Axis Wind Turbine Blades Using a Vortex Line Method
,”
Wind Energy
,
18
(
2
), pp.
253
266
.
2.
Chattot
,
J.-J.
,
2003
, “
Optimization of Wind Turbines Using Helicoidal Vortex Model
,”
ASME J. Sol. Energy Eng.
,
125
(
4
), pp.
418
424
.
3.
Goldstein
,
S.
,
1929
, “
On the Vortex Theory of Screw Propellers
,”
Proc. R. Soc. London. Ser. A
,
123
(
792
), pp.
440
465
.
4.
Selig
,
M. S.
, and
Tangler
,
J. L.
,
1995
, “
Development and Application of a Multipoint Inverse Design Method for Horizontal Axis Wind Turbines
,”
Wind Eng.
,
19
(
2
), pp.
91
106
.https://experts.illinois.edu/en/publications/development-and-application-of-a-multipoint-inverse-design-method
5.
Selig
,
M. S.
, and
Coverstone-Carroll
,
V. L.
,
1996
, “
Application of a Genetic Algorithm to Wind Turbine Design
,”
ASME J. Energy Resour. Technol.
,
118
(
1
), pp.
22
28
.
6.
Giguere
,
P.
, and
Selig
,
M.
,
1997
, “
Desirable Airfoil Characteristics for Large Variable-Speed Horizontal Axis Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
119
(
3
), pp.
253
260
.
7.
Lee
,
K.-H.
,
Kim
,
K.-H.
,
Lee
,
D.-H.
,
Lee
,
K.-T.
, and
Park
,
J.-P.
,
2010
, “
Two-Step Optimization for Wind Turbine Blade With Probability Approach
,”
ASME J. Sol. Energy Eng.
,
132
(
3
), p.
034503
.
8.
Adkins
,
C. N.
, and
Liebeck
,
R. H.
,
1994
, “
Design of Optimum Propellers
,”
J. Propul. Power
,
10
(
5
), pp.
676
682
.
9.
Bachant
,
P.
, and
Wosnik
,
M.
,
2016
, “Modeling the Near-Wake of a Vertical-Axis Cross-Flow Turbine With 2-D and 3-D RANS,” preprint
arXiv:1604.02611
.https://arxiv.org/abs/1604.02611
10.
Lam
,
H.
, and
Peng
,
H.
,
2016
, “
Study of Wake Characteristics of a Vertical Axis Wind Turbine by Two- and Three-Dimensional Computational Fluid Dynamics Simulations
,”
Renewable Energy
,
90
, pp.
386
398
.
11.
Alaimo
,
A.
,
Esposito
,
A.
,
Messineo
,
A.
,
Orlando
,
C.
, and
Tumino
,
D.
,
2015
, “
3D CFD Analysis of a Vertical Axis Wind Turbine
,”
Energies
,
8
(
4
), pp.
3013
3033
.
12.
Marsh
,
P.
,
Ranmuthugala
,
D.
,
Penesis
,
I.
, and
Thomas
,
G.
,
2015
, “
Three-Dimensional Numerical Simulations of Straight-Bladed Vertical Axis Tidal Turbines Investigating Power Output, Torque Ripple and Mounting Forces
,”
Renewable Energy
,
83
, pp.
67
77
.
13.
Selvaraj
,
S.
,
2014
, “Numerical Investigation of Wind Turbine and Wind Farm Aerodynamics,”
Ph.D. thesis
, Iowa State University, Ames, IA.http://lib.dr.iastate.edu/etd/13829/
14.
Troldborg
,
N.
,
2008
, “Actuator Line Modeling of Wind Turbine Wakes,”
Ph.D. thesis
, Technical University of Denmark, Lyngby, Denmark.http://orbit.dtu.dk/files/5289074/Thesis.pdf
15.
Sørensen
,
J. N.
, and
Myken
,
A.
,
1992
, “
Unsteady Actuator Disc Model for Horizontal Axis Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
39
(
1
), pp.
139
149
.
16.
Byrd
,
R. H.
,
Gilbert
,
J. C.
, and
Nocedal
,
J.
,
2000
, “
A Trust Region Method Based on Interior Point Techniques for Nonlinear Programming
,”
Math. Program.
,
89
(
1
), pp.
149
185
.
17.
Coleman
,
T. F.
, and
Li
,
Y.
,
1994
, “
On the Convergence of Interior-Reflective Newton Methods for Nonlinear Minimization Subject to Bounds
,”
Math. Program.
,
67
(
1–3
), pp.
189
224
.
18.
Rosenberg
,
A.
,
Selvaraj
,
S.
, and
Sharma
,
A.
,
2014
, “
A Novel Dual-Rotor Turbine for Increased Wind Energy Capture
,”
J. Phys.: Conf. Ser.
,
524
(1), p.
012078
.
19.
Moghadassian
,
B.
,
Rosenberg
,
A.
, and
Sharma
,
A.
,
2016
, “
Numerical Investigation of Aerodynamic Performance and Loads of a Novel Dual Rotor Wind Turbine
,”
Energies
,
9
(
7
), p.
571
.
20.
Rosenberg
,
A.
, and
Sharma
,
A.
,
2016
, “
A Prescribed-Wake Vortex Lattice Method for Preliminary Design of Co-Axial, Dual-Rotor Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
138
(
6
), p.
061002
.
21.
Moghadassian
,
B.
,
Rosenberg
,
A.
,
Hu
,
H.
, and
Sharma
,
A.
,
2015
, “Numerical Investigation of Aerodynamic Performance and Loads of a Novel Dual Rotor Wind Turbine,”
AIAA
Paper No. 2015-1665.
22.
Wang
,
Z.
,
Tian
,
W.
,
Ozbay
,
A.
,
Sharma
,
A.
, and
Hui
,
H.
,
2016
, “
An Experimental Study on the Aeromechanics and Wake Characteristics of a Novel Twin-Rotor Wind Turbine in a Turbulent Boundary Layer Flow
,”
Exp. Fluids
,
57
(
9
), p.
150
.
23.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1972
, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
,
15
(
10
), pp.
1787
1806
.
24.
Launder
,
B. E.
, and
Spalding
,
D.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
25.
Hargreaves
,
D.
, and
Wright
,
N. G.
,
2007
, “
On the Use of the k–ε Model in Commercial CFD Software to Model the Neutral Atmospheric Boundary Layer
,”
J. Wind Eng. Ind. Aerodyn.
,
95
(
5
), pp.
355
369
.
26.
Mikkelsen
,
R.
,
2003
, “Actuator Disc Methods Applied to Wind Turbines,”
Ph.D. thesis
, Technical University of Denmark, Lyngby, Denmark.http://orbit.dtu.dk/fedora/objects/orbit:85749/datastreams/file_5452244/content
27.
Rosenberg
,
A.
,
2016
, “A Computational Analysis of Wind Turbine and Wind Farm Aerodynamics With a Focus on Dual Rotor Wind Turbines,”
Ph.D. thesis
, Iowa State University, Ames, IA.http://lib.dr.iastate.edu/etd/16004/
28.
Thelen
,
A. S.
,
Leifsson
,
L. T.
,
Sharma
,
A.
, and
Koziel
,
S.
,
2016
, “Direct and Surrogate-Based Optimization of Dual-Rotor Wind Turbines,”
AIAA
Paper No. 2016-1265.
29.
Nocedal
,
J.
, and
Wright
,
S. J.
,
2006
,
Sequential Quadratic Programming
,
Springer
, New York.
30.
Kelley
,
C. T.
,
1999
,
Iterative Methods for Optimization
,
SIAM
, Philadelphia, PA.
31.
Byrd
,
R. H.
,
Schnabel
,
R. B.
, and
Shultz
,
G. A.
,
1987
, “
A Trust Region Algorithm for Nonlinearly Constrained Optimization
,”
SIAM J. Numer. Anal.
,
24
(
5
), pp.
1152
1170
.
32.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “Definition of a 5-MW Reference Wind Turbine for Offshore System Development,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL/TP-500-38060
.https://www.nrel.gov/docs/fy09osti/38060.pdf
33.
Hand
,
M.
,
Simms
,
D.
,
Fingersh
,
L.
,
Jager
,
D.
,
Cotrell
,
J.
,
Schreck
,
S.
, and
Larwood
,
S.
,
2001
, “Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL/TP-500-29955
.https://www.nrel.gov/docs/fy02osti/29955.pdf
34.
Drela
,
M.
,
1989
, “
XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils
,”
Low Reynolds Number Aerodynamics
,
Springer
, Berlin, pp.
1
12
.
You do not currently have access to this content.