The performance of photovoltaic (PV) modules in outdoor field conditions is adversely affected by the rise in module operating temperature. Wind flow around the module affects its temperature significantly, which ultimately influences the module output power. In this paper, a new approach has been presented, for module temperature estimation of different technology PV modules (amorphous Si, hetero-junction with intrinsic thin-layer (HIT) and multicrystalline Si) installed at the site of National Institute of Solar Energy (NISE), India. The model based on presented approach incorporates the effect of wind speed along with wind direction, while considering in-plane irradiance, ambient temperature, and the module efficiency parameters. For all the technology modules, results have been analyzed qualitatively and quantitatively under different wind situations. Qualitative analysis based on the trend of module temperature variation under different wind speed and wind direction along with irradiance and ambient temperature has been presented in detail from experimental data. Quantitative results obtained from presented model showed good agreement with the experimentally measured data for different technology modules. The model based on presented approach showed marked improvement in results with high consistency, in comparison with other models analyzed for different technology modules installed at the site. The improvement was very significant in case of multicrystalline Si technology modules, which is most commonly used and highly temperature sensitive technology. Presented work can be used for estimating the effect of wind on different technology PV modules and for prediction of module temperature, which affects the performance and reliability of PV modules.

References

References
1.
Ndiaye
,
A.
,
Kébé
,
C.
,
Charki
,
A.
,
Ndiaye
,
P.
,
Sambou
,
V.
, and
Kobi
,
A.
,
2014
, “
Degradation Evaluation of Crystalline-Silicon Photovoltaic Modules After a Few Operation Years in a Tropical Environment
,”
Sol. Energy
,
103
, pp.
70
77
.
2.
Sinha
,
A.
,
Sastry
,
O. S.
, and
Gupta
,
R.
,
2016
, “
Nondestructive Characterization of Encapsulant Discoloration Effects in Crystalline-Silicon PV Modules
,”
Sol. Energy Mater. Sol. Cells
,
155
, pp.
234
242
.
3.
Green
,
M. A.
,
1982
,
Solar Cells: Operating Principles, Technology, and System Applications
,
Prentice Hall
, Englewood Cliffs, NJ.
4.
King
,
D. L.
,
Boyson
,
W. E.
, and
Kratochvil
,
J. A.
,
2002
, “
Analysis of Factors Influencing the Annual Energy Production of Photovoltaic Systems
,” 29th
IEEE
Photovoltaic Specialists Conference, New Orleans, LA, May 19–24, pp.
1356
1361
.
5.
Schwingshackl
,
C.
,
Petitta
,
M.
,
Wagner
,
J. E.
,
Belluardo
,
G.
,
Moser
,
D.
,
Castelli
,
M.
,
Zebisch
,
M.
, and
Tetzlaff
,
A.
,
2013
, “
Wind Effect on PV Module Temperature: Analysis of Different Techniques for an Accurate Estimation
,”
Energy Procedia
,
40
, pp.
77
86
.
6.
Lasnier
,
F.
, and
Ang
,
T. G.
,
1990
,
Photovoltaic Engineering Handbook
,
Adam Hilger
,
New York
, p.
258
.
7.
Tripanagnostopoulos
,
Y.
,
Souliotis
,
M.
,
Battisti
,
R.
, and
Corrado
,
A.
,
2005
, “
Energy, Cost and LCA Results of PV and Hybrid PV/T Solar Systems
,”
Prog. Photovolt: Res. Appl.
,
13
(3), pp.
235
250
.
8.
Markvart
,
T.
,
2000
,
Solar Electricity
,
2nd ed.
,
Wiley
,
Chichester, UK
.
9.
Diaf
,
S.
,
Notton
,
G.
,
Belhamel
,
M.
,
Haddadi
,
M.
, and
Louche
,
A.
,
2008
, “
Design and Techno-Economical Optimization for Hybrid PV/Wind System Under Various Meteorological Conditions
,”
Appl. Energy
,
85
(10), pp.
968
987
.
10.
Ross
,
R. G., Jr.
, and
Smokler
,
M. I.
,
1986
, “Flat-Plate Solar Array Project Final Report—Vol. VI: Engineering Sciences and Reliability,” Jet Propulsion Laboratory, Pasadena, CA, Report No.
DOE/JPL-1012-125
.https://ntrs.nasa.gov/search.jsp?R=19870011218
11.
Nordmann
,
T.
, and
Clavadetscher
,
L.
,
2003
, “
Understanding Temperature Effects on PV System Performance
,”
Third World Conference on Photovoltaic Energy Conversion
, Osaka, Japan, May 11–18, pp.
2243
2246
.http://ieeexplore.ieee.org/document/1305032/
12.
TamizhMani
,
G.
,
Ji
,
L.
,
Tang
,
Y.
, and
Petacci
,
L.
,
2003
, “
Photovoltaic Module Thermal-Wind Performance: Long-Term Monitoring and Model Development for Energy Rating
,”
NCPV and Solar Program Review Meeting
, Denver, CO, Mar. 24–26, pp.
936
939
.https://www.nrel.gov/docs/fy03osti/35645.pdf
13.
Chenni
,
R.
,
Markhlouf
,
M.
,
Kerbache
,
T.
, and
Bouzid
,
A.
,
2007
, “
A Detailed Modelling Method for Photovoltaic Cells
,”
Energy
,
32
(9), pp.
1724
1730
.
14.
King
,
D. L.
,
Kratochvil
,
J. A.
, and
Boyson
,
W. E.
,
2004
, “Photovoltaic Array Performance Model,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND2004-3535
.http://prod.sandia.gov/techlib/access-control.cgi/2004/043535.pdf
15.
Kurtz
,
S.
,
Whitfield
,
K.
,
TamizhMani
,
G.
,
Koehl
,
M.
,
Miller
,
D.
,
Joyce
,
J.
,
Wohlgemuth
,
J.
,
Bosco
,
N.
,
Kempe
,
M.
, and
Zgonena
,
T.
,
2011
, “
Evaluation of High-Temperature Exposure of Photovoltaic Modules
,”
Prog. Photovolt: Res. Appl
,
19
(8), pp.
954
965
.
16.
King
,
D. L.
,
1997
, “
Photovoltaic Module and Array Performance Characterization Methods for All System Operating Conditions
,”
NREL/SNL Photovoltaic Program Review Meeting
, Lakewood, CO, Nov. 18–22, pp.
1
22
.http://www.cleanenergy.com.ph/projects/CBRED/TA%20RE%20Manufacturers%20Sub-Contract/Compendium%20of%20References/Solar%20References/Collection%20of%20Solar%20Standards%20and%20Articles/C111%20PV%20Module%20Performance%20Characterizatn%20mthds.pdf
17.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2006
,
Solar Energy Thermal Processes
,
3rd ed.
,
Wiley
,
Hoboken, NJ
.
18.
Bahaidarah
,
H.
,
Rehman
,
S.
,
Subhan
,
A.
,
Gandhidasan
,
P.
, and
Baig
,
H.
,
2015
, “
Performance Evaluation of a PV Module Under Climatic Conditions of Dhahran, Saudi Arabia
,”
Energy Explor. Exploit.
,
33
(
6
), pp.
909
930
.
19.
Skoplaki
,
E.
,
Boudouvis
,
A. G.
, and
Palyvos
,
J. A.
,
2008
, “
A Simple Correlation for the Operating Temperature of Photovoltaic Modules of Arbitrary Mounting
,”
Sol. Energy Mater. Sol. Cell
,
92
(11), pp.
1393
1402
.
20.
Sparrow
,
E. M.
,
Ramsey
,
J. W.
, and
Mass
,
E. A.
,
1979
, “
Effect of Finite Width on Heat Transfer and Fluid Flow About an Inclined Rectangular Plate
,”
ASME J. Heat Transfer
,
101
(2), pp.
199
204
.
21.
Incropera
,
F. P.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
6th ed.
,
Wiley
, New York.
22.
Sharples
,
S.
, and
Charlesworth
,
P. S.
,
1998
, “
Full-Scale Measurements of Wind-Induced Convective Heat Transfer From a Roof-Mounted Flat Plate Solar Collector
,”
Sol. Energy
,
62
(2), pp.
69
77
.
23.
Jakhrani
,
A. Q.
,
Othman
,
A. K.
,
Rigit
,
A. R. H.
, and
Samo
,
S. R.
,
2011
, “
Determination and Comparison of Different Photovoltaic Module Temperature Models for Kuching, Sarawak
,”
IEEE First Conference Clean Energy and Technology
(
CET
), Kuala Lumpur, Malaysia, June 27–29, pp.
231
236
.
24.
Magare
,
D.
,
Sastry
,
O. S.
,
Gupta
,
R.
,
Kumar
,
A.
, and
Sinha
,
A.
,
2012
, “
Data Logging Strategy of Photovoltaic (PV) Module Test Beds
,” 27th European Photovoltaic Solar Energy Conference
(EU PVSEC)
, Frankfurt, Germany, Sept. 24–28, pp.
3259
3262
.http://www.academia.edu/28850557/Data_Logging_Strategy_of_Photovoltaic_PV_Module_Test_beds
25.
Huld
,
T.
,
Gottschalg
,
R.
,
Beyer
,
H. G.
, and
Topic
,
M.
,
2010
, “
Mapping the Performance of PV Modules, Effects of Module Type and Data Averaging
,”
Sol. Energy
,
84
(2), pp.
324
338
.
26.
Bora
,
B.
,
Sastry
,
O. S.
,
Kumar
,
A.
,
Renu
,
M.
,
Bangar
,
M.
, and
Prasad
,
B.
,
2016
, “
Estimation of Most Frequent Conditions and Performance Evaluation of Three Photovoltaic Technology Modules
,”
ASME J. Sol. Energy Eng.
,
138
(
5
), p.
054504
.
27.
IEC,
2009
, “Procedures for Temperature and Irradiance Corrections to Measured I-V Characteristics,” International Electrotechnical Commission, Geneva, Switzerland, Standard No.
IEC 60891:2009
.https://webstore.iec.ch/publication/3821
28.
IEC,
2005
, “General Requirements for the Competence of Testing and Calibration Laboratories,” International Electrotechnical Commission, Geneva, Switzerland, Standard No.
ISO/IEC 17025:2005
.https://www.iso.org/standard/39883.html
29.
IEC,
2011
, “Photovoltaic (PV) Module Performance Testing and Energy Rating—Part 1: Irradiance and Temperature Performance Measurements and Power Rating,” International Electrotechnical Commission, Geneva, Switzerland, Standard No.
IEC 61853-1:2011
https://webstore.iec.ch/publication/6035.
30.
Magare
,
D. B.
,
Sastry
,
O. S.
,
Gupta
,
R.
,
Betts
,
T. R.
,
Gottschalg
,
R.
,
Kumar
,
A.
,
Bora
,
B.
, and
Singh
,
Y. K.
,
2016
, “
Effect of Seasonal Spectral Variations on Performance of Three Different Photovoltaic Technologies in India
,”
Int. J. Energy Environ. Eng.
,
7
(
1
), pp.
93
103
.
31.
Rosell
,
J. I.
, and
Ibanez
,
M.
,
2006
, “
Modelling Power Output in Photovoltaic Modules for Outdoor Operating Conditions
,”
Energy Convers. Manage.
,
47
(15–16), pp.
2424
2430
.
You do not currently have access to this content.