Deploying renewable energy systems (RES) to supply electricity faces many challenges related to cost and the variability of the renewable resources. One possible solution to these challenges is to hybridize RES with conventional power systems and include energy storage units. In this study, the feasibility analysis of a grid-connected photovoltaic (PV)-wind-battery hybrid system is presented as a microgrid for a university campus-scale community on a Mediterranean island. Models for PV and wind turbine systems are presented to estimate energy production, and net present cost (NPC) and levelized cost of electricity (LCOE) are used as economic metrics. A parametric study is performed with hourly time-steps to determine the sizes of energy generation and storage units to minimize the NPC for a small community as the case study. Two alternate configurations with and without storage are proposed. In both cases, the resulting LCOE is 0.15 USD/kWh while the current electricity tariff for the analyzed location was 0.175 USD/kWh in 2015. This lower unit cost of electricity leads to a lower NPC considering a 25-year lifetime. Different estimated and measured solar irradiance and wind speed data sets are used to evaluate the performance of the designed microgrid. Sensitivity analysis on different available weather data sets shows that the uncertainty in wind resource estimations is much higher than the uncertainty in solar resource estimations. Moreover, the results show that solar and wind resources could be utilized synergistically for the studied location.

References

1.
Evans
,
A.
,
Strezov
,
V.
, and
Evans
,
T. J.
,
2009
, “
Assessment of Sustainability Indicators for Renewable Energy Technologies
,”
Renewable Sustainable Energy Rev.
,
13
(
5
), pp.
1082
1088
.
2.
Paska
,
J.
,
Biczel
,
P.
, and
Kłos
,
M.
,
2009
, “
Hybrid Power Systems—An Effective Way of Utilising Primary Energy Sources
,”
Renewable Energy
,
34
(
11
), pp.
2414
2421
.
3.
Koroneos
,
C.
,
Michailidis
,
M.
, and
Moussiopoulos
,
N.
,
2004
, “
Multi-Objective Optimization in Energy Systems: The Case Study of Lesvos Island, Greece
,”
Renewable Sustainable Energy Rev.
,
8
(
1
), pp.
91
100
.
4.
Giannoulis
,
E. D.
, and
Haralambopoulos
,
D. A.
,
2011
, “
Distributed Generation in an Isolated Grid: Methodology of Case Study for Lesvos—Greece
,”
Appl. Energy
,
88
(
7
), pp.
2530
2540
.
5.
Ma
,
T.
,
Yang
,
H.
, and
Lu
,
L.
,
2014
, “
A Feasibility Study of a Stand-Alone Hybrid Solar-Wind-Battery System for a Remote Island
,”
Appl. Energy
,
121
, pp.
149
158
.
6.
Sadati
,
S. M. S.
,
Qureshi
,
F. U.
, and
Baker
,
D.
,
2015
, “
Energetic and Economic Performance Analyses of Photovoltaic, Parabolic Trough Collector and Wind Energy Systems for Multan, Pakistan
,”
Renewable Sustainable Energy Rev.
,
47
, pp.
844
855
.
7.
The HOMER Energy Team
,
2015
, “
The HOMER® Microgrid Software
,” HOMER Energy, Boulder, CO, accessed Nov. 27, 2017, https://www.homerenergy.com/homer-pro.html
8.
Bekele
,
G.
, and
Palm
,
B.
,
2010
, “
Feasibility Study for a Standalone Solar-Wind-Based Hybrid Energy System for Application in Ethiopia
,”
Appl. Energy
,
87
(
2
), pp.
487
495
.
9.
Bekele
,
G.
, and
Tadesse
,
G.
,
2012
, “
Feasibility Study of Small Hydro/PV/Wind Hybrid System for Off-Grid Rural Electrification in Ethiopia
,”
Appl. Energy
,
97
, pp.
5
15
.
10.
Askari
,
I. B.
, and
Ameri
,
M.
,
2012
, “
Techno-Economic Feasibility Analysis of Stand-Alone Renewable Energy Systems (PV/Bat, Wind/Bat and Hybrid PV/Wind/Bat) in Kerman, Iran
,”
Energy Sources, Part B: Econ. Plann., Policy
,
7
(1), pp.
45
60
.
11.
Asrari
,
A.
,
Ghasemi
,
A.
, and
Javidi
,
M. H.
,
2012
, “
Economic Evaluation of Hybrid Renewable Energy Systems for Rural Electrification in Iran—A Case Study
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
3123
3130
.
12.
Al-Badi
,
A. H.
,
Albadi
,
M. H.
,
Malik
,
A.
,
Al-Hilali
,
M.
,
Al-Busaidi
,
A.
, and
Al-Omairi
,
S.
,
2013
, “
Levellised Electricity Cost for Wind and PV–Diesel Hybrid System in Oman at Selected Sites
,”
Int. J. Sustainable Eng.
,
7
(2), pp.
96
102
.
13.
WeatherOnline,
2015
, “
Oman Climate
,” WeatherOnline Ltd, London, accessed Nov. 27, 2017, http://www.weatheronline.co.uk/reports/climate/Oman.htm
14.
Hong Kong Government
,
2015
, “
Climate of Hong Kong
,” Kowloon, Hong Kong, accessed Nov. 27, 2017, http://www.hko.gov.hk/cis/climahk_e.htm
15.
Li
,
J.
,
Wei
,
W.
, and
Xiang
,
J.
,
2012
, “
A Simple Sizing Algorithm for Stand-Alone PV/Wind/Battery Hybrid Microgrids
,”
Energies
,
5
(
12
), pp.
5307
5323
.
16.
González
,
A.
,
Riba
,
J. R.
, and
Rius
,
A.
,
2015
, “
Optimal Sizing of a Hybrid Grid-Connected Photovoltaic-Wind-Biomass Power System
,”
Sustainable
,
7
(
9
), pp.
12787
12806
.
17.
Pathirana
,
W. P. M. R.
, and
Muhtaroğlu
,
A.
,
2013
, “
Multifaceted Feasibility Analysis PV Solar Application Northern Cyprus
,”
Int. J. Renewable Energy Res.
,
3
(
4
), pp. 941–950.
18.
Tariq
,
M. A.
,
2014
,
Methodology to Size Large Scale Solar PV Installations for Institutions With Unidirectional Metering
,
Middle East Technical University
,
Northern Cyprus Campus
, Guzelyurt, Cyprus.
19.
Yenen
,
M.
,
2015
,
Modeling Electrical Energy Production in Northwestern Cyprus Based on Solar and Wind Measurements
,
Middle East Technical University
,
Northern Cyprus Campus
, Guzelyurt, Cyprus.
20.
Sadati
,
S. M. S.
,
Jahani
,
E. O.
, and
Taylan
,
2015
, “
Technical and Economic Analyses for Sizing PV Power Plant With Storage System for METU NCC
,”
ASME
Paper No. IMECE2015-50959.
21.
CanadianSolar,
2017
, “
CS6X-P Data Sheet
,” CanadianSolar, Guelph, ON, Canada, accessed Nov. 27, 2017, https://www.canadiansolar.com/fileadmin/user_upload/downloads/datasheets/en/new/Canadian_Solar-Datasheet-_Dymond_CS6X-P-FG_en.pdf
22.
Jos
,
F.
,
2015
,
Optimization of Hybrid Renewable Energy Systems
,
University of Toronto
, Toronto, ON, Canada.
23.
Lambert
,
T.
,
Gilman
,
P.
, and
Lilienthal
,
P.
,
2006
, “
Micropower System Modeling With Homer
,”
Integration of Alternative Sources of Energy
, F. A. Farret and M. G. Simões, eds., Wiley, Hoboken, NJ.
24.
Primus Power
,
2015
, “
Energy Pod
,” Primus Power, Hayward, CA, accessed Nov. 27, 2017, http://primuspower.com/en/product/
25.
Hernández-Moro
,
J.
, and
Martínez-Duart
,
J. M.
,
2013
, “
Analytical Model for Solar PV and CSP Electricity Costs: Present LCOE Values and Their Future Evolution
,”
Renewable Sustainable Energy Rev.
,
20
, pp.
119
132
.
26.
Muhtaroğlu
,
Ö.
,
2012
, “
State Planning Organization
,” State Planning Organization, Ankara, Turkey, accessed Nov. 27, 2017, http://www.devplan.org/frame-eng.html
27.
Black & Veatch
,
2012
, “
Cost Report: Cost and Performance Data for Power Generation Technologies
,” Black & Veatch Corporation, Overland Park, KS,
Report
.
28.
Wholesale Solar
,
2015
, “
Inverter Prices
,” Wholesale Solar, Mount Shasta, CA, accessed Nov. 27, 2017, http://www.wholesalesolar.com/power-inverters
29.
Maleki
,
A.
, and
Pourfayaz
,
F.
,
2015
, “
Sizing of Stand-Alone Photovoltaic/Wind/Diesel System With Battery and Fuel Cell Storage Devices by Harmony Search Algorithm
,”
J. Energy Storage
,
2
, pp.
30
42
.
30.
Kaldellis
,
J. K.
,
Zafirakis
,
D.
, and
Kondili
,
E.
,
2010
, “
Optimum Sizing of Photovoltaic-Energy Storage Systems for Autonomous Small Islands
,”
Int. J. Electr. Power Energy Syst.
,
32
(
1
), pp.
24
36
.
31.
TRNC Electricity Authority (Kib-Tek), 2015, “
Local Electricity Authority (Kib-Tek)
,” TRNC Electricity Authority (Kib-Tek), Guzelyurt, Cyprus, accessed Sept. 9, 2015, https://www.kibtek.com/
32.
Meteotest,
2015
, “
Meteonorm Software
,” Meteotest, Bern, Switzerland, accessed Nov. 27, 2017, http://meteonorm.com/
33.
Skeiker
,
K.
,
2007
, “
Comparison of Methodologies for TMY Generation Using 10 Years Data for Damascus, Syria
,”
Energy Convers. Manag.
,
48
(
7
), pp.
2090
2102
.
34.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
1991
,
Solar Engineering of Thermal Processes
, Vol.
216
,
Wiley
,
New York
, p.
230
.
35.
Erbs
,
D. G.
,
Klein
,
S. A.
, and
Duffie
,
J. A.
,
1982
, “
Estimation of the Diffuse Radiation Fraction for Hourly, Daily and Monthly-Average Global Radiation
,”
Sol. Energy
,
28
(
4
), pp.
293
302
.
36.
Johnson
,
H. K.
,
1999
, “
Simple Expressions for Correcting Wind Speed Data for Elevation
,”
Coast. Eng.
,
36
(
3
), pp.
263
269
.
37.
Ali
,
S. M. H.
,
Zuberi
,
M. J. S.
,
Tariq
,
M. A.
,
Baker
,
D.
, and
Mohiuddin
,
A.
,
2015
, “
A Study to Incorporate Renewable Energy Technologies Into the Power Portfolio of Karachi, Pakistan
,”
Renewable Sustainable Energy Rev.
,
47
, pp.
14
22
.
38.
Ali
,
S. M. H.
,
2015
,
Optimal Photovoltaic Size Estimation for a Campus Area Considering Uncertainties in Load, Power Generation and Electricity Rates
,
Middle East Technical University
, Ankara, Turkey.
39.
Ou
,
T. C.
, and
Hong
,
C. M.
,
2014
, “
Dynamic Operation and Control of Microgrid Hybrid Power Systems
,”
Energy
,
66
, pp.
314
323
.
40.
Ou
,
T.-C.
,
Lu
,
K.-H.
, and
Huang
,
C.-J.
,
2017
, “
Improvement of Transient Stability in a Hybrid Power Multi-System Using a Designed NIDC (Novel Intelligent Damping Controller)
,”
Energies
,
10
(
4
), p.
488
.
41.
Hong
,
C.-M.
,
Ou
,
T.-C.
, and
Lu
,
K.-H.
,
2013
, “
Development of Intelligent MPPT (Maximum Power Point Tracking) Control for a Grid-Connected Hybrid Power Generation System
,”
Energy
,
50
, pp.
270
279
.
42.
Lin
,
W.-M.
, and
Ou
,
T.-C.
,
2011
, “
Unbalanced Distribution Network Fault Analysis With Hybrid Compensation
,”
IET Gener. Transm. Distrib.
,
5
(
1
), p.
92
.
43.
Ou
,
T. C.
,
2012
, “
A Novel Unsymmetrical Faults Analysis for Microgrid Distribution Systems
,”
Int. J. Electr. Power Energy Syst.
,
43
(
1
), pp.
1017
1024
.
44.
Ou
,
T. C.
,
2013
, “
Ground Fault Current Analysis With a Direct Building Algorithm for Microgrid Distribution
,”
Int. J. Electr. Power Energy Syst.
,
53
, pp.
867
875
.
45.
Tester
,
J. W.
,
2005
,
Sustainable Energy: Choosing Among Options
,
MIT Press
, Cambridge, MA.
46.
Honorio
,
L.
,
Bartaire
,
J. G.
,
Bauerschmidt
,
R.
,
Ohman
,
T.
,
Tihanyi
,
Z.
,
Zeinhofer
,
H.
, and
Scowcroft
,
J. F.
,
2003
, “
Efficiency in Electricity Generation
,” EURELECTRIC/VGB PowerTech e.V., Brussels, Belgium/Essen, Germany,
Report
.
You do not currently have access to this content.