This paper evaluates the effectiveness of phase change materials (PCMs) for the improvement of summer thermal comfort in lightweight buildings. Experiments have been carried out using PCM in the form of DuPont Energain wallboards in combination with a roof. Two factors influencing the effectiveness of PCM (thickness and location of PCM layer) have been investigated. An experimental study was carried out using two identical test cavities submitted to Casablanca weather. Thermal performance such as the roof surface temperatures and heat flux densities, through the envelope, have been studied. The results indicated that, compared with reference room (without PCM), the thermal storage allows solar radiation to be stored and released up to 6–7 h after solar irradiation; this has effects on both the reduction of daily temperature swings (up to 2 °C) and heat flux (more than 88%). It has been proved that the PCM with a thickness of 10.52 mm on the outer face of the roof has good thermal insulation effect and energy efficiency potential.

References

1.
Diaconu
,
B. M.
,
2011
, “
Thermal Energy Savings in Buildings With PCM-Enhanced Envelope: Influence of Occupancy Pattern and Ventilation
,”
Energy Build.
,
43
(
1
), pp.
101
107
.
2.
Min Hee
,
C.
, and
Jin Chul
,
P.
,
2016
, “
Development of PCM Cool Roof System to Control Urban Heat Island Considering Temperate Climatic Conditions
,”
Energy Build.
,
116
, pp.
341
348
.
3.
Cerón
,
I. C.
,
Nalia
,
J.
, and
Kayat
,
M.
,
2011
, “
Experimental Tile With Phase Change Materials (PCM) for Building Use
,”
Energy Build.
,
43
(
8
), pp.
1869
1874
.
4.
Telkes
,
M.
,
1949
, “
Review of Solar House Heating
,”
Heat. Vent.
,
46
(11), pp.
68
74
.
5.
Telkes
,
M.
, and
Raymond
,
E.
,
1950
, “
Storing Solar Heat in Chemicals
,”
Heat. Vent.
,
46
(11), pp.
79
86
.
6.
Lane
,
G. A.
,
1981
, “
Adding Strontium Chloride or Calcium Hydroxide to Calcium Chloride Hexahydrate Heat Storage Material
,”
Sol. Energy
,
27
(
1
), pp.
73
75
.
7.
Li
,
D.
,
Zheng
,
Y.
,
Liu
,
C.
, and
Wu
,
G.
,
2015
, “
Numerical Analysis on Thermal Performance of Roof Contained PCM of a Single Residential Building
,”
Energy Convers. Manage.
,
100
, pp.
147
156
.
8.
Wei
,
X.
,
Xin
,
W.
, and
Yinping
,
Z.
,
2009
, “
Analytical Optimization of Interior PCM for Energy Storage in a Lightweight Passive Solar Room
,”
Appl. Energy
,
86
(
10
), pp.
2013
2018
.
9.
Ong
,
K. S.
,
2011
, “
Temperature Reduction in Attic and Ceiling Via Insulation of Severalpassive Roof Designs
,”
Energy Convers. Manage
,
52
(
6
), pp.
2405
2411
.
10.
Mourid
,
A.
,
Faraji
,
M.
,
EL Alami
,
M.
,
Najam
,
M.
, and
Berroug
,
F.
,
2016
, “
Solar Thermal Control of Building Integrated Phase Change Materials: An Experimental Survey
,”
Int. J. Res. Eng. Technol.
,
5
(2), pp.
188
192
.
11.
Soaresa
,
N.
,
Costa
,
J. J.
, and
Gaspar
,
A. R.
,
2013
, “
Review of Passive PCM Latent Heat Thermal Energy Storage Systems Towards Buildings Energy Efficiency
,”
Energy Build.
,
59
, pp.
82
103
.
12.
Tokuç
,
A.
,
Başaran
,
T.
, and
Cengiz Yesügey
,
S.
,
2015
, “
An Experimental and Numerical Investigation on the Use of Phase Change Materials in Building Elements: The Case of a Flat Roof in Istanbul
,”
Energy Build.
,
102
, pp.
91
104
.
13.
Pasupathy
,
A.
, and
Velraj
,
R.
,
2008
, “
Effect of Double Layer Phase Change Material in Building Roof for Year-Round Thermal Management
,”
Energy Build.
,
40
(
3
), pp.
193
203
.
14.
Jaworski
,
M.
,
Łapka
,
P.
, and
Furmański
,
P.
,
2014
, “
Numerical Modelling and Experimental Studies of Thermal Behaviour of Building Integrated Thermal Energy Storage Unit in a Form of a Ceiling Panel
,”
Appl. Energy
,
113
, pp.
548
557
.
15.
Lewandowski
,
A.
,
2012
,
Utilisation Des MCP Dans Le Bâtiment 3E
,
INSA-Strasbourg
,
Strasbourg, France
, p.
54
.
16.
Le recknagel
,
1995
,
Manuel Pratique Du Génie Climatique
Tome 1, PYC Livresannée
, p.
198
.
17.
TRNSYS
, 2017, “A TRaNsient SYstems Simulation Program,” University of Wisconsin-Madison, Madison, WI, accessed Sept. 22, 2017, http://sel.me.wisc.edu/trnsys
18.
Jin
,
X.
,
Medina
,
M. A.
, and
Zhang
,
X.
,
2014
, “
On the Placement of a Phase Change Material Thermal Shield, Within the Cavity of Buildings Walls for Heat Transfer Rate Reduction
,”
Energy
,
73
, pp.
780
78
.
19.
Sahli, S., 2017, “
Transfert de chaleur dans le bâtiment 02
,” SlideShare, LinkedIn Corporation, Sunnyvale, CA, accessed Mar. 13, 2017, http://fr.slideshare.net/Saamysaami/transfert-de-chaleur-dans-le-btiment-02
20.
Yarbrough
,
D. W.
,
2010
,
Reflective Materials Radiant Barriers Insulation Buildings, Mater. Energy Efficiency Thermal Comfort Building
, Woodhead Publishing, Cambridge, UK, pp.
305
318
.
21.
Adelard
,
L.
,
Pignolet-Tardan
,
F.
, and
Mara
,
T.
,
1989
, “
Sky Temperature Modelisation and Applications in Building
,”
Renewable Energy
,
I5
(
1–4
), pp.
418
430
.
22.
Jayamaha
,
S. E. G.
,
Wijeysundera
,
N. E.
, and
Chou
,
S. K.
, 1996, “
Measurement of the Heat Transfer Coefficient for Walls
,”
Building Environ.
,
31
(
5
), pp.
399
407
.
23.
Conductivité thermique du sol
,” accessed Apr. 25, 2017, http://www.af-sa.ch/wiki/index.php/Conductivit%C3%A9_thermique_du_sol
24.
El Khatib
,
H.
,
1996
, “
Etude expérimentale des écoulements thermo-convectifs le long d’une plaque verticale non uniformément chauffée dans une cavité (Ra≈108)
,” Thèse, de l’INSA de, Toulouse, France.
You do not currently have access to this content.