Variable aperture mechanisms are being used in many fields including medicine, electronics, fluid mechanics, and optics. The main design characteristics of these aperture concepts are the use of multiple blades regulating aperture area and consequently the incoming medium flow. Manufacturing complexities primarily depend on the concept geometry, material, and the process application requirements. Design of a variable aperture demands meticulous methodology and careful consideration of the application field. This paper provides an in-depth methodology on the design of a novel iris mechanism for temperature control in high temperature solar thermal receivers and solar reactors. Such methodology can be used as a guideline for iris mechanisms implemented in other applications as well as in design of different apparatuses exposed to high temperature. Optical simulations in present study have been performed to demonstrate enhanced performance of the iris mechanism over conventional Venetian blind shutter serving as optical attenuators in concentrating solar power systems. Results showed that optical absorption efficiency is improved by 14% while reradiation loss through the aperture is reduced by 2.3% when the iris mechanism is used. Correlation for adaptive control of aperture area was found through computational surface area measurement. Experimental testing with a 7 kW solar simulator at different power levels demonstrated the performance of the mechanism to maintain stable temperature under variable flux.

References

References
1.
Graves
,
E. E.
,
Zhou
,
H.
,
Chatterjee
,
R.
,
Keall
,
P. J.
,
Gambhir
,
S. S.
,
Contag
,
C. H.
, and
Boyer
,
A. L.
,
2007
, “
Design and Evaluation of a Variable Aperture Collimator for Conformal Radiotherapy of Small Animals Using a Micro CT Scanner
,”
Med. Phys.
,
34
(
11
), pp.
4359
4367
.
2.
Draheim
,
J.
,
Burger
,
T.
,
Korvink
,
J. G.
, and
Wallrabe
,
U.
,
2011
, “
Variable Aperture Stop Based on the Design of a Single Chamber Silicone Membrane Lens With Integrated Actuation
,”
Opt. Lett.
,
36
(
11
), pp.
2032
2034
.
3.
Egger
,
E.
,
1963
, “
Diaphragm Regulating Slider
,” Emile Egger & Cie SA, Cressier, Switzerland, U.S. Patent No.
3,101,736
.http://www.google.si/patents/US3101736
4.
Fuh
,
Y.-K.
, and
Huang
,
W.-C.
,
2013
, “
Adaptive Optics Assisted Reconfigurable Liquid-Driven Optical Switch
,”
Opt. Commun.
,
300
, pp.
85
89
.
5.
Yamada
,
T.
,
2015
, “
Diaphragm Control Apparatus of Interchangeable Lens Camera
,” Pentax Ricoh Imaging Company, Ltd., Tokyo, Japan, U.S. Patent No.
8,947,586
.https://www.google.ch/patents/US20130195436
6.
Gat
,
N.
, and
Zhang
,
J.
,
2013
, “
Continuous Variable Aperture for Forward Looking Infrared Cameras Based on Adjustable Blades
,” Opto-Knowledge Systems, Inc., Los Angeles, CA, U.S. Patent No.
8,462,418
.http://www.google.co.in/patents/US8462418
7.
Tanabe
,
E.
, and
Ito
,
M.
,
2014
, “
X-Ray Collimator
,” Accuthera Inc., Kanagawa, Japan, U.S. Patent No.
8,731,142
.http://www.google.com.pg/patents/US8731142
8.
Seo
,
H. W.
,
Chae
,
J. B.
,
Hong
,
S. J.
,
Rhee
,
K.
,
Hyeon Chang
,
J.
, and
Chung
,
S. K.
,
2015
, “
Electromagnetically Driven Liquid Iris
,”
Sens. Actuators A
,
231
, pp.
52
58
.
9.
Al Hamidi
,
Y.
,
Abdulla
,
S.
,
El Zamli
,
M.
,
Rizk
,
I.
, and
Ozalp
,
N.
,
2011
, “
Design, Manufacturing and Testing of an Aperture Mechanism for a Solar Reactor
,”
ASME
Paper No. ES2011-54567.
10.
Abdulla
,
S.
,
Zahreddine
,
H.
,
El Zamli
,
M.
,
Majid
,
F. A.
,
Rizk
,
I.
,
Al Hamidi
,
Y.
, and
Ozalp
,
N.
,
2011
, “
Design, Manufacturing and Testing of a Camera-Like Aperture Mechanism for a Solar Reactor
,”
ASME
Paper No. IMECE2011-65814.
11.
Dahl
,
J. K.
,
Buechler
,
K. J.
,
Weimer
,
A. W.
,
Lewandowski
,
A.
, and
Bingham
,
C.
,
2004
, “
Solar-Thermal Dissociation of Methane in a Fluid-Wall Aerosol Flow Reactor
,”
Int. J. Hydrogen Energy
,
29
(
7
), pp.
725
736
.
12.
Steinfeld
,
A.
, and
Schubnell
,
M.
,
1993
, “
Optimum Aperture Size and Operating Temperature of a Solar Cavity-Receiver
,”
Sol. Energy
,
50
(
1
), pp.
19
25
.
13.
Ozalp
,
N.
,
Toyama
,
A.
,
Devanuri
,
J.
,
Rowshan
,
R.
, and
Al-Hamidi
,
Y.
, 2011, “
Effect of Cameralike Aperture in Quest for Maintaining Quasi-Constant Radiation Inside a Solar Reactor
,”
ASME J. Mech. Des.
,
133
(
2
), p. 021002.
14.
Rodriguez
,
J.
,
Cañadas
,
I.
,
Zarza
,
E.
,
Rajpaul
,
V.
, and
Richter
,
C.
,
2016
, “
New PSA High Concentration Solar Furnace SF40
,”
AIP Conf. Proc.
,
1734
(
1
), p.
070028
.
15.
Haueter
,
P.
,
Seitz
,
T.
, and
Steinfeld
,
A.
,
1999
, “
A New High-Flux Solar Furnace for High-Temperature Thermochemical Research
,”
ASME J. Sol. Energy Eng.
,
121
(1), pp. 77–80.
16.
Neumann
,
A.
, and
Groer
,
U.
,
1996
, “
Experimenting With Concentrated Sunlight Using the DLR Solar Furnace
,”
Sol. Energy
,
58
(
4–6
), pp.
181
190
.
17.
Lambda Research Corporation,
2017
, “
TracePro (Version 7.4)
,” Lambda Research Corporation, Littleton, MA, accessed Aug. 31, 2017, https://www.lambdares.com/tracepro
18.
Ulmer
,
S.
,
Reinalter
,
W.
,
Heller
,
P.
,
Lüpfert
,
E.
, and
Martinez
,
D.
,
2002
, “
Beam Characterization and Improvement With a Flux Mapping System for Dish Concentrators
,”
ASME
Paper No. SED2002-1064.
19.
Kraupl
,
S.
, and
Steinfeld
,
A.
,
2005
, “
Monte Carlo Radiative Transfer Modeling of a Solar Chemical Reactor for the Co-Production of Zinc and Syngas
,”
ASME J. Sol. Energy Eng.
,
127
(
1
) pp.
102
108
.
20.
Steinfeld
,
A.
,
Brack
,
M.
,
Meier
,
A.
,
Weidenkaff
,
A.
, and
Wuillemin
,
D.
,
1998
, “
A Solar Chemical Reactor for Co-Production of Zinc and Synthesis Gas
,”
Energy
,
23
(
10
), pp.
803
814
.
21.
Andreas
,
A.
, and
Stoffel
,
T.
,
1981
, “
NREL Solar Radiation Research Laboratory (SRRL): Baseline Measurement System (BMS)
,” National Renewable Energy Laboratory, Golden, CO, Report No.
DA-5500-56488
.https://data.nrel.gov/submissions/7
22.
Syms
,
R. R. A.
,
Zou
,
H.
,
Stagg
,
J.
, and
Veladi
,
H.
,
2004
, “
Sliding-Blade MEMS Iris and Variable Optical Attenuator
,”
J. Micromech. Microeng.
,
14
(
12
), pp.
1700
1710
.
23.
Van den Langenbergh
,
L.
,
Ophoff
,
C.
, and
Ozalp
,
N.
,
2015
, “
An Iris Mechanism Driven Temperature Control of Solar Thermal Reactors
,”
First Thermal and Fluid Engineering Summer Conference
(
TFESC
), New York, Aug. 9–12, pp. 1–15.https://lirias.kuleuven.be/handle/123456789/506267
24.
Wittel
,
H.
,
Muhs
,
D.
,
Jannasch
,
D.
, and
Vofliek
,
J.
,
2013a
,
Roloff/Matek Machineonderdelen Theorieboek
, Den Haag Academic Service 2013, 5de Herziene Druk edn., Den Haag, The Netherlands.
25.
Fuglede
,
N.
, and
Thomsen
,
J. J.
,
2016
, “
Kinematics of Roller Chain Drives—Exact and Approximate Analysis
,”
Mech. Mach. Theory
,
100
, pp.
17
32
.
26.
Wittel
,
H.
,
Muhs
,
D.
,
Jannasch
,
D.
, and
Vofliek
,
J.
,
2013b
,
Roloff/Matek Machineonderdelen Tabellenboek
, Den Haag Academic Service 2013, 5de Herziene Druk edn., Den Haag, The Netherlands.
27.
Ophoff
,
C.
,
Korotunov
,
S.
, and
Ozalp
,
N.
,
2017
, “
Optimization of Design and Process Parameters for Maximized and Stable Solar Receiver Efficiency
,”
Second Thermal and Fluid Engineering Conference
(
TFEC
), Las Vegas, NV, Apr. 2–5, pp. 1–15.https://lirias.kuleuven.be/handle/123456789/572284
You do not currently have access to this content.