Optimization based on reconstruction of the velocity, temperature, and radiation fields in a porous absorber with continuous linear porosity or pore diameter distribution is carried out in this work. This study analyzes three typical linear pore structure distributions: increasing (“I”), decreasing (“D”), and constant (“C”) types, respectively. In general, the D type porosity (ϕ) layout combined with the I type pore diameter (dp) distribution would be an excellent pore structure layout for a porous absorber. The poor performance range, which should be avoided in the absorber design, is found to be within a wide range of porosity layouts (ϕi = ∼0.7 and ϕo > 0.6) and pore diameter layouts (di = 1.5–2.5 mm), respectively. With a large inlet porosity (ϕi > 0.8), the D type layout with larger porosity gradient (Gp) has a better thermal performance; however, the I type dp layout with a smaller inlet pore diameter (di < 1.5 mm) and a larger pore diameter gradient (Gdp) is recommended when considering the lower pressure drop. Different pore structure layouts (D type or I type) have a significant effect on the pressure drop, even with the same average ϕa and da, the maximum deviation can be up to 70.1%. The comprehensive performance evaluation criteria (PEC) value shows that the D type ϕ layout with a larger ϕa has an excellent thermopressure drop performance, and a part of PEC values for the I type dp layout are greater than unity.

References

References
1.
Avila-Marin
,
A. L.
,
Fernandez-Reche
,
J.
, and
Tellez
,
F. M.
,
2013
, “
Evaluation of the Potential of Central Receiver Solar Power Plants: Configuration, Optimization and Trends
,”
Appl. Energy
,
112
, pp.
274
288
.
2.
Wang
,
P.
,
Liu
,
D. Y.
,
Xu
,
C.
,
Xia
,
L.
, and
Zhou
,
L.
,
2016
, “
A Unified Heat Transfer Model in a Pressurized Volumetric Solar Receivers
,”
Renewable Energy
,
99
, pp.
663
672
.
3.
Ávila-Marín
,
A. L.
,
2011
, “
Volumetric Receivers in Solar Thermal Power Plants With Central Receiver System Technology: A Review
,”
Sol. Energy
,
85
(
5
), pp.
891
910
.
4.
Heller
,
P.
,
Pfänder
,
M.
,
Denk
,
T.
,
Tellez
,
F.
,
Valverde
,
A.
,
Fernandez
,
J.
, and
Ring
,
A.
,
2006
, “
Test and Evaluation of a Solar Powered Gas Turbine System
,”
Sol. Energy
,
80
(
10
), pp.
1225
1230
.
5.
Liu
,
D. Y.
,
2007
, “
Report on the 70 kW Solar Tower Power System in Nanjing
,” Hohai University, Nanjing, China, Report No. RS-07-01016.
6.
Wang
,
P.
,
Li
,
J. B.
,
Bai
,
F. W.
,
Liu
,
D. Y.
,
Xu
,
C.
,
Zhao
,
L.
, and
Wang
,
Z. F.
,
2017
, “
Experimental and Theoretical Evaluation on the Thermal Performance of a Windowed Volumetric Solar Receiver
,”
Energy
,
119
, pp.
652
661
.
7.
Lim
,
S.
,
Kang
,
Y.
,
Lee
,
H.
, and
Shin
,
S.
,
2014
, “
Design Optimization of a Tubular Solar Receiver With a Porous Medium
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
566
572
.
8.
Wu
,
Z. Y.
,
Caliot
,
C.
,
Flamant
,
G.
, and
Wang
,
Z. F.
,
2011
, “
Numerical Simulation of Convective Heat Transfer Between Air Flow and Ceramic Foams to Optimise Volumetric Solar Air Receiver Performances
,”
Int. J. Heat Mass Transfer
,
54
(
7–8
), pp.
1527
1537
.
9.
Xu
,
C.
,
Song
,
Z.
,
Chen
,
L.-D.
, and
Zhen
,
Y.
,
2011
, “
Numerical Investigation on Porous Media Heat Transfer in a Solar Tower Receiver
,”
Renewable Energy
,
36
(
3
), pp.
1138
1144
.
10.
Sciti
,
D.
,
Silvestroni
,
L.
,
Mercatelli
,
L.
,
Sans
,
J.-L.
, and
Sani
,
E.
,
2013
, “
Suitability of Ultra-Refractory Diboride Ceramics as Absorbers for Solar Energy Applications
,”
Sol. Energy Mater. Sol. Cells
,
109
, pp.
8
16
.
11.
Wang
,
P.
,
Vafai
,
K.
, and
Liu
,
D. Y.
,
2014
, “
Analysis of Radiative Effect Under Local Thermal Non-Equilibrium Conditions in Porous Media-Application to a Solar Air Receiver
,”
Numer. Heat Transfer, Part A
,
65
(
10
), pp.
931
948
.
12.
Capuano
,
R.
,
Fend
,
T.
,
Schwarzbözl
,
P.
,
Smirnova
,
O.
,
Stadler
,
H.
,
Hoffschmidt
,
B.
, and
Pitz-Paal
,
R.
,
2016
, “
Numerical Models of Advanced Ceramic Absorbers for Volumetric Solar Receivers
,”
Renewable Sustainable Energy Rev.
,
58
, pp.
656
665
.
13.
Fleming
,
A.
,
Folsom
,
C.
,
Ban
,
H.
, and
Ma
,
Z.
,
2016
, “
A General Method to Analyze the Thermal Performance of Multi-Cavity Concentrating Solar Power Receivers
,”
Sol. Energy
,
150
, pp.
608
618
.
14.
Li
,
Q.
,
Bai
,
F.
,
Yang
,
B.
,
Wang
,
Z.
,
El Hefni
,
B.
,
Liu
,
S.
,
Kubo
,
S.
,
Kiriki
,
H.
, and
Han
,
M.
,
2016
, “
Dynamic Simulation and Experimental Validation of an Open Air Receiver and a Thermal Energy Storage System for Solar Thermal Power Plant
,”
Appl. Energy
,
178
, pp.
281
293
.
15.
Wang
,
P.
,
Vafai
,
K.
,
Liu
,
D. Y.
, and
Xu
,
C.
,
2015
, “
Analysis of Collimated Irradiation Under Local Thermal Non-Equilibrium Condition in a Packed Bed
,”
Int. J. Heat Mass Transfer
,
80
, pp.
789
801
.
16.
Wang
,
P.
, and
Vafai
,
K.
,
2017
, “
Modeling and Analysis of an Efficient Porous Media for a Solar Porous Absorber With a Variable Pore Structure
,”
ASME J. Sol. Energy Eng.
,
139
(
5
), p.
051005
.
17.
Aichmayer
,
L.
,
Spelling
,
J.
,
Laumert
,
B.
, and
Fransson
,
T.
,
2013
, “
Micro Gas-Turbine Design for Small-Scale Hybrid Solar Power Plants
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
113001
.
18.
Wang
,
P.
,
Liu
,
D. Y.
, and
Xu
,
C.
,
2013
, “
Numerical Study of Heat Transfer Enhancement in the Receiver Tube of Direct Steam Generation With Parabolic Trough by Inserting Metal Foams
,”
Appl. Energy
,
102
, pp.
449
460
.
You do not currently have access to this content.