The stability of platform is the most fundamental guarantee for the safe operation of floating wind turbine in complex marine environment. The helical strakes used on spar platform in the traditional oil industry are useful and effective. This paper is to investigative the validity of helical strakes when used for offshore wind energy harvesting. The National Renewable Energy Laboratory (NREL) 5 MW wind turbine based on OC3-Hywind spar-buoy platform with the attachment of helical strakes is modeled for the purpose to analysis the impact of helical strakes and its design parameters (number, height, and pitch ratio) on the dynamic response of the floating wind turbine spar platform. The dynamic response of spar platform under wind, wave, and current loads is calculated and analyzed based on the radiation and diffraction theory, the finite element method, and the orthogonal design method. The research result shows that the helical strakes can effectively suppress the dynamic response of the platform but enlarge the wave exciting force, and helical strakes cannot change peak frequency of response amplitude operator (RAO) and wave exciting force of spar in frequency-domain. The best parameter combination is two pieces of helical strakes with height of 15%D and the pitch ratio of 5. Height and pitch ratio of the helical strakes have significant influence on pitch response, while the number and interaction of height and pitch ratio have slight effect.

References

References
1.
Shen
,
M.
,
Hu
,
Z.
, and
Liu
,
G.
,
2016
, “
Dynamic Response and Viscous Effect Analysis of a TLP-Type Floating Wind Turbine Using a Coupled Aero-Hydro-Mooring Dynamic Code
,”
Renewable Energy
,
99
, pp.
800
812
.
2.
Pantaleo
,
A.
,
Pellerano
,
A.
,
Ruggiero
,
F.
, and
Trovato
,
M.
,
2005
, “
Feasibility Study of Off-Shore Wind Farms: An Application to Puglia Region
,”
Sol. Energy
,
79
(
3
), pp.
321
331
.
3.
Lefebvre
,
S.
, and
Collu
,
M.
,
2011
, “
Preliminary Design of a Floating Support Structure for a 5 MW Offshore Wind Turbine
,”
Ocean Eng.
,
40
, pp.
15
26
.
4.
Liu
,
L. Q.
,
Incecik
,
A.
,
Zhang
,
Y. H.
, and
Tang
,
Y. G.
,
2014
, “
Analysis of Heave Motions of a Truss Spar Platform With Semi-Closed Moon Pool
,”
Ocean Eng.
,
92
, pp.
162
174
.
5.
Liu
,
Q.
,
Yang
,
K.
,
Huang
,
C. W.
, and
Zhao
,
X. L.
,
2013
, “
Study on the Dynamic Response of Floating Wind Turbines
,”
J. Eng. Thermophys.
,
34
(2), pp.
1256
1262
.
6.
Yun
,
K. M.
,
Sa
,
Y. H.
,
Bo
,
W. N.
,
Byoung
,
W. K.
, and
Seok
,
W. H.
,
2014
, “
A Numerical Study of the Motion and Structural Responses of Interlinked Spars in Irregular Waves
,”
J. Ocean Wind Energy
,
1
(
3
), pp.
161
169
.http://www.isope.org/publications/jowe/jowe-01-3/01-3-p161-ts-r-01-Kim.pdf
7.
Cradden
,
L.
,
Kalogeri
,
C.
,
Martinez Barrios
,
I.
,
Galanis
,
G.
,
Ingram
,
D.
, and
Kallos
,
G.
,
2016
, “
Multi-Criteria Site Selection for Offshore Renewable Energy Platforms
,”
Renewable Energy
,
87
, pp.
791
806
.
8.
Butterfield
,
S.
,
Musial
,
W.
, and
Jonkman
,
J.
,
2005
, “
Engineering Challenges for Floating Offshore Wind Turbine
,”
Copenhagen Offshore Wind Conference
(
COW
), Cophenhagen, Denmark, Oct. 26–28, pp.
377
382
.http://www.nrel.gov/docs/fy07osti/38776.pdf
9.
Wang
,
Y.
,
Yang
,
J. M.
, and
Yang
,
C. J.
,
2008
, “
Review on the Study of Spar Vortex-Induced Motions Key Characteristic
,”
China Offshore Platform
,
23
(
3
), pp.
1
10
.
10.
Sui
,
J.
,
Wang
,
J. S.
,
Liang
,
S. P.
, and
Tian
,
Q. L.
,
2016
, “
VIV Suppression for a Large Mass-Damping Cylinder Attached With Helical Strakes
,”
J. Fluid Struct.
,
62
, pp.
125
146
.
11.
Jun
,
B. R.
,
Hang
,
S. C.
,
Woo
,
C. L.
,
Hyun
,
S. S.
, and
In
,
P. K.
,
2002
, “
Heave and Pitch Motions of a Spar Platform With Damping Plate
,”
12th International Offshore and Polar Engineering Conference
, Kitakyushu, Japan, May 26–31, SPE Paper No.
ISOPE-I-02-031
https://www.onepetro.org/conference-paper/ISOPE-I-02-031.
12.
Jun
,
B. R.
,
Hang
,
S. C.
,
Woo
,
C. L.
,
Hyun
,
S. S.
, and
In
,
P. K.
,
2003
, “
An Experimental Study for Mooring Effects on the Stability of Spar Platform
,”
13th International Offshore and Polar Engineering Conference
, Honolulu, HI, May 25–30, SPE Paper No.
ISOPE-I-03-041
https://www.onepetro.org/conference-paper/ISOPE-I-03-041.
13.
Van
,
D. R.
,
Magee
,
A.
,
Perryman
,
S.
, and
Gebara
,
J.
,
2003
, “
Model Test Experience on Vortex Induced Vibrations of Truss Spars
,”
Offshore Technology Conference
(OTC), Houston, TX, May 5–8, SPE Paper No.
OTC-15242-MS
https://www.onepetro.org/conference-paper/OTC-15242-MS.
14.
Van
,
D. R.
,
Voogt
,
A.
,
Fourchy
,
P.
, and
Mirza
,
S.
,
2003
, “
The Effect of Mooring System and Sheared Currents on Vortex Induced Motions of Truss Spars
,”
ASME
Paper No. OMAE2003-37151.
15.
Hao
,
Y. Z.
,
Yu
,
H. X.
, and
Mi
,
W. J.
,
2012
, “
Influence of Helical Strakes on Vortex Patterns in Wake Flow of Circular Straked Cylinder
,”
J. Shanghai Marit. Univ.
,
33
(
2
), pp.
55
60
.
16.
Quen
,
L. K.
,
Abu
,
A.
,
Kato
,
N.
,
Muhamad
,
P.
,
Sahekhaimi
,
A.
, and
Abdullah
,
H.
,
2014
, “
Investigation on the Effectiveness of Helical Strakes in Suppressing VIV of Flexible Riser
,”
Appl. Ocean Res.
,
44
, pp.
82
91
.
17.
Ranjith
,
E. R.
,
Sunil
,
A. S.
, and
Pauly
,
L.
,
2015
,”
Analysis of Flow Over a Circular Cylinder Fitted With Helical Strakes
,”
Procedia Technol.
,
24
, pp.
452
460
.
18.
Jonkman
,
J. M.
, and
Matha
,
D.
,
2009
, “
A Quantitative Comparison of the Response of Three Floating Platforms
,” European Offshore Wind Conference and Exhibition, Stockholm, Sweden, Sept. 14–16, Paper No.
NREL/CP-500-46726
.http://www.nrel.gov/docs/fy10osti/46726.pdf
19.
Roberston
,
A. N.
, and
Jonkman
,
J. M.
,
2011
, “
Loads Analysis of Several Offshore Floating Wind Turbine Concepts
,”
International Society of Offshore and Polar Engineers Conference
, Maui, HI, June 19–24, pp.
443
450
.http://www.nrel.gov/docs/fy12osti/50539.pdf
20.
Zhao
,
J.
,
Zhang
,
L.
, and
Wu
,
H. T.
,
2012
, “
Motion Performance and Mooring System of a Floating Offshore Wind Turbine
,”
J. Mar. Sci. Appl.
,
11
(
3
), pp.
328
334
.
21.
Jeon
,
S. H.
,
Cho
,
Y. U.
,
Seo
,
M. W.
,
Cho
,
J. R.
, and
Jeong
,
W. B.
,
2013
, “
Dynamic Response of Floating Substructure of Spar-Type Offshore Wind Turbine With Catenary Mooring Cables
,”
Ocean Eng.
,
72
(
7
), pp.
356
364
.
22.
Jonkman
,
J. M.
,
2009
, “
Dynamics of Offshore Floating Wind Turbines—Model Development and Verification
,”
Wind Energy
,
12
(
5
), pp.
459
492
.
23.
Ye
,
X. R.
,
2012
, “
Study on Environmental Loads and Coupled Motion Response of Floating Offshore Wind Turbine System
,”
Ph.D. thesis
, Harbin Engineering University, Harbin, China.https://www.science-definition.com/whatis/Study_on_Environmental_Loads_and_Coupled_Motion_Response_of_Floating_Offshore_Wind_Turbine_System
24.
Mao
,
S. S.
,
2004
,
Design of Experiment
,
China Statistics Press
,
Beijing, China
, Chap. 2.
25.
Frank
,
W. R.
,
Tognarelli
,
S. T.
,
Slocum
,
R. B.
, and
Campbell
,
S.
,
2004
, “
Flow-Induced Vibration of a Long, Flexible, Straked Cylinder in Uniform and Linearly Sheared Currents
,”
Offshore Technology Conference
(OTC), Houston, TX, May 3–6, SPE Paper No.
OTC-16340-MS
.
26.
Baarholm
,
R.
, and
Lie
,
H.
,
2006
, “
Systematic Parametric Investigation of the Efficiency of Helical Strakes
,” Deep Offshore Technology Conference, Houston, TX, Nov. 28–30.
27.
Lin
,
H. H.
,
2008
, “
Analysis of VIV Dynamic Response and Fatigue Damage Reliability for Marine Riser
,”
Ph.D. thesis
, Dalian University of Technology, Dalian, China.https://www.science-definition.com/whatis/Analysis_of_VIV_Dynamic_Response_and_Fatigue_Damage_Reliability_for_Marine_Riser
You do not currently have access to this content.