In this research, an inclined three-dimensional nanofluid-based tube-on-sheet flat plate solar collector (FPSC) working under laminar conjugated mixed convection heat transfer is numerically modeled. The working fluid is selected to be alumina/water (Al2O3/water) and results from heat transfer, entropy generation, and pressure drop points of view are being presented for various prominent parameters, namely volume fraction, nanoparticles diameter, Richardson and Reynolds numbers. According to the simulations, Nusselt number decreases as the Richardson number or volume fraction of the nanofluid rises, whereas heat transfer coefficient experiences an augmentation when volume concentration and the Richardson number surge. Also, data reveal that total entropy generation rate of the system declines when the alumina/water nanofluid is utilized inside the system as the volume fraction or the Richardson number increases. Additionally, it is found that increasing the nanoparticle volume concentration or the Richardson number diminishes the pressure drop considerably, whereas friction factor substantially proliferates as the Richardson number or volume fraction rises. Eventually, employment of larger alumina nanoparticles mean diameter eventuates in providing lower Nusselt number and apparent friction factor while it increases the pressure drop and heat transfer coefficient. Finally, comparing the efficiency of the presented FPSC design with those available in the literature shows a superior performance by the present design with its maximum occurring at 2 vol %.

References

References
1.
Tiwari
,
G. N.
,
2015
,
Solar Energy: Fundamentals, Design, Modeling and Applications
,
Alpha Science International
,
Oxford, UK
.
2.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2006
,
Solar Engineering of Thermal Processes
,
Wiley
,
New York
.
3.
Kalogirou
,
S. A.
,
2013
,
Solar Energy Engineering: Processes and Systems
,
Elsevier
,
Oxford, UK
.
4.
Verma
,
S. K.
, and
Tiwari
,
A. K.
,
2015
, “
Progress of Nanofluid Application in Solar Collectors: A Review
,”
Energy Convers. Manage.
,
100
, pp.
324
346
.
5.
Tagliafico
,
L. A.
,
Scarpa
,
F.
, and
De Rosa
,
M.
,
2014
, “
Dynamic Thermal Models and CFD Analysis for Flat-Plate Thermal Solar Collectors—A Review
,”
Renewable Sustainable Energy Rev.
,
30
, pp.
526
537
.
6.
Suman
,
S.
,
Khan
,
M. K.
, and
Pathak
,
M.
,
2015
, “
Performance Enhancement of Solar Collectors—A Review
,”
Renewable Sustainable Energy Rev.
,
49
, pp.
192
210
.
7.
Cerón
,
J. F.
,
Pérez-García
,
J.
,
Solano
,
J. P.
,
García
,
A.
, and
Herrero-Martín
,
R.
,
2015
, “
A Coupled Numerical Model for Tube-on-Sheet Flat-Plate Solar Liquid Collectors, Analysis and Validation of the Heat Transfer Mechanism
,”
Appl. Energy
,
140
, pp.
275
287
.
8.
Wang
,
N.
,
Zeng
,
S.
,
Zhou
,
M.
, and
Wang
,
S.
,
2015
, “
Numerical Study of Flat Plate Solar Collector With Novel Heat Collecting Components
,”
Int. Commun. Heat Mass Transfer
,
69
, pp.
18
22
.
9.
Jiandong
,
Z.
,
Hanzhong
,
T.
, and
Susu
,
C.
,
2015
, “
Numerical Simulation for Structural Parameters of Flat-Plate Solar Collector
,”
Sol. Energy
,
117
, pp.
192
202
.
10.
Shojaeizadeh
,
E.
, and
Veysi
,
F.
,
2016
, “
Development of a Correlation for Parameter Controlling Using Exergy Efficiency Optimization of an Al2O3/Water Nanofluid Based Flat-Plate Solar Collector
,”
Appl. Therm. Eng.
,
98
, pp.
1116
1129
.
11.
Hussain
,
S.
, and
Harrison
,
S. J.
,
2015
, “
Experimental and Numerical Investigations of Passive Air Cooling of a Residential Flat-Plate Solar Collector Under Stagnation Conditions
,”
Sol. Energy
,
122
, pp.
1023
1036
.
12.
Ma
,
L.
,
Zhao
,
T.
,
Zhang
,
J.
, and
Zhao
,
D.
,
2016
, “
Numerical Study on the Heat Transfer Characteristics of Filled-Type Solar Collector With U-Tube
,”
Appl. Therm. Eng.
,
107
, pp.
642
652
.
13.
Serale
,
G.
,
Goia
,
F.
, and
Perino
,
M.
,
2016
, “
Numerical Model and Simulation of a Solar Thermal Collector With Slurry Phase Change Material (PCM) as the Heat Transfer Fluid
,”
Sol. Energy
,
134
, pp.
429
444
.
14.
Shojaeizadeh
,
E.
,
Veysi
,
F.
, and
Kamandi
,
A.
,
2015
, “
Exergy Efficiency Investigation and Optimization of an Al2O3-Water Nanofluid Flat-Plate Solar Collector
,”
Energy Build.
,
101
, pp.
12
23
.
15.
Nasrin
,
R.
, and
Alim
,
M. A.
,
2014
, “
Semi-Empirical Relation for Forced Convective Analysis Through a Solar Collector
,”
Sol. Energy
,
105
, pp.
455
467
.
16.
Mahian
,
O.
,
Kianifar
,
A.
,
Sahin
,
A. Z.
, and
Wongwises
,
S.
,
2014
, “
Entropy Generation During Al2O3/Water Nanofluid Flow in a Solar Collector: Effects of Tube Roughness, Nanoparticle Size, and Different Thermophysical Models
,”
Int. J. Heat Mass Transfer
,
78
, pp.
64
75
.
17.
Mahian
,
O.
,
Kianifar
,
A.
,
Sahin
,
A. Z.
, and
Wongwises
,
S.
,
2014
, “
Performance Analysis of a Minichannel-Based Solar Collector Using Different Nanofluids
,”
Energy Convers. Manage.
,
88
, pp.
129
138
.
18.
Akbarinia
,
A.
, and
Behzadmehr
,
A.
,
2007
, “
Numerical Study of Laminar Mixed Convection of a Nanofluid in Horizontal Curved Tubes
,”
Appl. Therm. Eng.
,
27
(
8–9
), pp.
1327
1337
.
19.
Sabaghan
,
A.
,
Edalatpour
,
M.
,
Moghadam
,
M. C.
,
Roohi
,
E.
, and
Niazmand
,
H.
,
2016
, “
Nanofluid Flow and Heat Transfer in a Microchannel With Longitudinal Vortex Generators, Two-Phase Numerical Simulation
,”
Appl. Therm. Eng.
,
100
, pp.
179
189
.
20.
Khanafer
,
K.
, and
Vafai
,
K.
,
2011
, “
A Critical Synthesis of Thermophysical Characteristics of Nanofluids
,”
Int. J. Heat Mass Transfer
,
54
(
19–20
), pp.
4410
4428
.
21.
Bianco
,
V.
,
Manca
,
O.
, and
Nardini
,
S.
,
2014
, “
Entropy Generation Analysis of Turbulent Convection Flow of Al2O3-Water Nanofluid in a Circular Tube Subjected to Constant Wall Heat Flux
,”
Energy Convers. Manage.
,
77
, pp.
306
314
.
22.
Garoosi
,
F.
,
Hoseininejad
,
F.
, and
Rashidi
,
M. M.
,
2016
, “
Numerical Study of Heat Transfer of Nanofluids in a Heat Exchanger
,”
Appl. Therm. Eng.
,
105
, pp.
436
455
.
23.
Maiga
,
S. E.
,
Nguyen
,
C. T.
,
Galanis
,
N.
, and
Roy
,
G.
,
2004
, “
Heat Transfer Behaviors of Nanofluids in a Uniformly Heated Tube
,”
Super Lattices Microstruct.
,
35
(
3–6
), pp.
543
557
.
24.
Mahian
,
O.
,
Kianifar
,
A.
,
Heris
,
S. Z.
, and
Wongwises
,
S.
,
2014
, “
First and Second Laws Analysis of a Minichannel-Based Solar Collector Using Boehmite Alumina Nanofluids: Effect of Nanoparticle Shape and Tube Materials
,”
Int. J. Heat Mass Transfer
,
78
, pp.
1166
1176
.
25.
Xuan
,
Y.
,
Li
,
Q.
, and
Hu
,
W.
,
2003
, “
Aggregation Structure and Thermal Conductivity of Nanofluids
,”
AIChE J.
,
49
(
4
), pp.
1038
1043
.
26.
Mirmasoumi
,
S.
, and
Behzadmehr
,
A.
,
2008
, “
Numerical Study of Laminar Mixed Convection of a Nanofluid in a Horizontal Tube Using Two-Phase Mixture Model
,”
Appl. Therm. Eng.
,
28
(
7
), pp.
717
727
.
27.
Edalatpour
,
M.
,
Kianifar
,
A.
, and
Ghiami
,
S.
,
2015
, “
Effect of Blade Installation on Heat Transfer and Fluid Flow Within a Single Slope Solar Still
,”
Int. Commun. Heat Mass Transfer
,
66
, pp.
63
70
.
28.
Edalatpour
,
M.
, and
Solano
,
J. P.
,
2017
, “
Thermal-Hydraulic Characteristics and Exergy Performance in Tube-on-Sheet Flat Plate Solar Collectors: Effects of Nanofluids and Mixed Convectionl
,”
Int. J. Therm. Sci.
,
118
, pp.
397
409
.
29.
Heshmati
,
F.
, and
Erturk
,
H.
,
2015
, “
Single-Phase Models for Improved Estimation of Friction Factor for Laminar Nanofluid Flow in Pipes
,”
Int. J. Heat Mass Transfer
,
95
, pp.
416
425
.
30.
Huang
,
Z.
,
Li
,
Z.
, and
Tao
,
W.
,
2017
, “
Numerical Study on Combined Natural and Forced Convection in the Fully-Developed Turbulent Region for a Horizontal Circular Tube Heated Non-Uniform Heat Flux
,”
Appl. Energy
,
185
(
Part 2
), pp.
2194
2208
.
31.
Edalatpour
,
M.
,
Aryana
,
K.
,
Kianifar
,
A.
,
Tiwari
,
G. N.
,
Mahian
,
O.
, and
Wongwises
,
S.
,
2016
, “
Solar Still: A Review of the Latest Developments in Numerical Simulations
,”
Sol. Energy
,
135
, pp.
897
922
.
32.
Agrebi
,
S.
,
Solano
,
J. P.
,
Snoussi
,
A.
, and
Ben Brahim
,
A.
,
2016
, “
Local Entropy Generation Rate Through Convective Heat Transfer in Tubes With Wire Coil Inserts
,”
Int. J. Numer. Methods Heat Fluid Flow
,
26
(
5
), pp.
1365
1379
.
33.
Bejan
,
A.
,
1979
, “
A Study of Entropy Generation in Fundamental Convective Heat Transfer
,”
ASME J. Heat Transfer
,
101
(
4
), pp.
718
725
.
34.
Bejan
,
A.
,
1982
,
Entropy Generation Through Heat and Fluid Flow
,
Wiley
,
New York
.
35.
Li
,
J.
, and
Kleinstreuer
,
C.
,
2010
, “
Entropy Generation Analysis for Nanofluid Flow in Microchannels
,”
ASME J. Heat Transfer
,
132
(
12
), p.
122401
.
36.
Bejan
,
A.
,
2013
,
Convection Heat Transfer
,
Wiley
,
Hoboken, NJ
.
37.
Ben Mansour
,
R.
,
Galanis
,
N.
, and
Nguyen
,
C. T.
,
2011
, “
Experimental Study of Mixed Convection With Water-Al2O3 Nanofluid in Inclined Tube With Uniform Wall Heat Flux
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
403
410
.
38.
Moghaddami
,
M.
,
Shahidi
,
S.
, and
Siavashi
,
M.
,
2012
, “
Entropy Generation Analysis of Nanofluid Flow in Turbulent and Laminar Regimes
,”
J. Comput. Theor. Nanosci.
,
9
(
10
), pp.
1586
1595
.
39.
Ting
,
H. H.
, and
Hou
,
S. S.
,
2015
, “
Numerical Study of Laminar Flow Forced Convection of Water-Al2O3 Nanofluids Under Constant Wall Temperature Condition
,”
Math. Probl. Eng.
,
2015
(
2015
), p.
180841
.
40.
Chen
,
Z.
,
Furbo
,
S.
,
Perers
,
B.
,
Fan
,
J.
, and
Andersen
,
E.
,
2012
, “
Efficiencies of Flat Plate Solar Collectors at Different Flow Rates
,”
Energy Procedia
,
30
, pp.
65
72
.
You do not currently have access to this content.