The thermal performance of an array of pressurized-air solar receiver modules integrated to a gas turbine power cycle is analyzed for a simple Brayton cycle (BC), recuperated Brayton cycle (RC), and combined Brayton–Rankine cycle (CC). While the solar receiver's solar-to-heat efficiency decreases at higher operating temperatures and pressures, the opposite is true for the power cycle's heat-to-work efficiency. The optimal operating conditions are achieved with a preheat stage for a solar receiver outlet air temperature of 1300 °C and an air cycle pressure ratio of 9, yielding a peak solar-to-electricity efficiency—defined as the ratio of the net cycle work output divided by the solar radiative power input through the receiver's aperture—of 39.3% for the combined cycle configuration.

References

References
1.
Romero
,
M.
, and
Steinfeld
,
A.
,
2012
, “
Concentrating Solar Thermal Power and Thermochemical Fuels
,”
Energy Environ. Sci.
,
5
(
11
), pp.
9234
9245
.
2.
Kehlhofer
,
R.
,
Hannemann
,
F.
,
Stirnimann
,
F.
, and
Rukes
,
B.
,
2009
,
Combined-Cycle Gas & Steam Turbine Power Plants
,
PennWell
,
Tulsa, OK
.
3.
Boyce
,
M. P.
,
2012
,
Gas Turbine Engineering Handbook
,
Gulf Professional Publishing
,
Houston, TX
.
4.
Dersch
,
J.
,
Geyer
,
M.
,
Herrmann
,
U.
,
Jones
,
S. A.
,
Kelly
,
B.
,
Kistner
,
R.
,
Ortmanns
,
W.
,
Pitz-Paal
,
R.
, and
Price
,
H.
,
2004
, “
Trough Integration Into Power Plants: A Study on the Performance and Economy of Integrated Solar Combined Cycle Systems
,”
Energy
,
29
(
5–6
), pp.
947
959
.
5.
Romero
,
M.
,
Buck
,
R.
, and
Pacheco
,
J. E.
,
2002
, “
An Update on Solar Central Receiver Systems, Projects, and Technologies
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp. 98–108.
6.
Kribus
,
A.
,
Zaibel
,
R.
,
Carey
,
D.
,
Segal
,
A.
, and
Karni
,
J.
,
1998
, “
A Solar-Driven Combined Cycle Power Plant
,”
Sol. Energy
,
62
(
2
), pp.
121
129
.
7.
Hischier
,
I.
,
Hess
,
D.
,
Lipiński
,
W.
,
Modest
,
M.
, and
Steinfeld
,
A.
,
2009
, “
Heat Transfer Analysis of a Novel Pressurized Air Receiver for Concentrated Solar Power Via Combined Cycles
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
4
), p.
041002
.
8.
Hischier
,
I.
,
Leumann
,
P.
, and
Steinfeld
,
A.
,
2012
, “
Experimental and Numerical Analyses of a Pressurized Air Receiver for Solar-Driven Gas Turbines
,”
ASME J. Sol. Energy Eng.
,
134
(
2
), p.
021003
.
9.
Hischier
,
I.
,
Poživil
,
P.
, and
Steinfeld
,
A.
,
2012
, “
A Modular Ceramic Cavity-Receiver for High-Temperature High-Concentration Solar Applications
,”
ASME J. Sol. Energy Eng.
,
134
(
1
), p.
011004
.
10.
Poživil
,
P.
,
Aga
,
V.
,
Zagorskiy
,
A.
, and
Steinfeld
,
A.
,
2014
, “
A Pressurized Air Receiver for Solar-Driven Gas Turbines
,”
Energy Proc.
,
49
, pp.
498
503
.
11.
Poživil
,
P.
,
Ettlin
,
N.
,
Stucker
,
F.
, and
Steinfeld
,
A.
,
2015
, “
Modular Design and Experimental Testing of a 50 kWth Pressurized-Air Solar Receiver for Gas Turbines
,”
ASME J. Sol. Energy Eng.
,
137
(
3
), p.
031002
.
12.
Hischier
,
I.
,
Poživil
,
P.
, and
Steinfeld
,
A.
,
2015
, “
Optical and Thermal Analysis of a Pressurized-Air Receiver Cluster for a 50 MWe Solar Power Tower
,”
ASME J. Sol. Energy Eng.
,
137
(
6
), p.
061002
.
13.
Winston
,
R.
,
Miñano
,
J. C.
, and
Benítez
,
P.
,
2005
,
Nonimaging Optics
,
Elsevier Academic Press
,
Amsterdam, The Netherlands
.
14.
Schmitz
,
M.
,
Schwarzbözl
,
P.
,
Buck
,
R.
, and
Pitz-Paal
,
R.
,
2006
, “
Assessment of the Potential Improvement Due to Multiple Apertures in Central Receiver Systems With Secondary Concentrators
,”
Sol. Energy
,
80
(
1
), pp.
111
120
.
15.
Kribus
,
A.
,
Doron
,
P.
,
Rubin
,
R.
,
Karni
,
J.
,
Reuven
,
R.
,
Duchan
,
S.
, and
Taragan
,
E.
,
1999
, “
A Multistage Solar Receiver: The Route to High Temperature
,”
Sol. Energy
,
67
(
1–3
), pp.
3
11
.
16.
Poživil
,
P.
,
Ackermann
,
S.
, and
Steinfeld
,
A.
,
2015
, “
Numerical Heat Transfer Analysis of a 50 kWth Pressurized-Air Solar Receiver for Gas Turbines
,”
ASME J. Sol. Energy Eng.
,
137
(
6
), p.
064504
.
17.
Keenan
,
J. H.
,
Kaye
,
J.
, and
Caho
,
J.
,
1985
,
Gas Tables
,
Wiley
,
New York
.
18.
Wagner
,
W.
, and
Pruss
,
A.
,
2002
, “
The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use
,”
J. Phys. Chem. Ref. Data
,
31
(
2
), pp.
387
535
.
19.
Cumpsty
,
N. A.
,
2004
,
Compressor Aerodynamics
,
Krieger Publishing
,
Malabar, FL
.
20.
Saravanamuttoo
,
H. I. H.
,
Rogers
,
G. F. C.
, and
Cohen
,
H.
,
2009
,
Gas Turbine Theory
,
Prentice Hall
,
Upper Saddle River, NJ
.
21.
Ramesh
,
S. K.
, and
Dusan
,
S. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
Wiley
,
New York
.
22.
Pacheco
,
J. E.
,
2002
,
Final Test and Evaluation Results From the Solar Two Project
,
Sandia National Laboratories
,
Albuquerque, NM
.
23.
Boyce
,
M. P.
,
2011
, “
Combined Cycle Power Plant
,”
Energy and Power Generation Handbook
,
ASME Press
,
New York
.
24.
International Molybdenum Association
, 2015, “
High-Temperature Steel
,” International Molybdenum Association, London, UK, accessed Apr. 12, 2015, www.imoa.info
25.
Bloch
,
H. P.
,
1996
,
A Practical Guide to Steam Turbine Technology
,
McGraw-Hill
,
New York
.
26.
Heller
,
P.
,
Pfänder
,
M.
,
Denk
,
T.
,
Tellez
,
F.
,
Valverde
,
A.
,
Fernandez
,
J.
, and
Ring
,
A.
,
2006
, “
Test and Evaluation of a Solar Powered Gas Turbine System
,”
Sol. Energy
,
80
(
10
), pp.
1225
1230
.
27.
Kim, J. S.
,
2014
, “
Solar Air Turbine Project—Final Report: Project Results
,” Solar Thermal Foundation Project, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia.
28.
Sanz-Bermejo
,
J.
,
Gallardo-Natividad
,
V.
,
Gonzalez-Aguilar
,
J.
, and
Romero
,
M.
,
2014
, “
Comparative System Performance Analysis of Direct Steam Generation Central Receiver Solar Thermal Power Plants in Megawatt Range
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p.
011028
.
29.
Zanganeh
,
G.
,
Khanna
,
R.
,
Walser
,
C.
,
Pedretti
,
A.
,
Haselbacher
,
A.
, and
Steinfeld
,
A.
,
2015
, “
Experimental and Numerical Investigation of Combined Sensible–Latent Heat for Thermal Energy Storage at 575 °C and Above
,”
Sol. Energy
,
114
, pp.
77
90
.
30.
Ströhle
,
S.
,
Haselbacher
,
A.
,
Jovanovic
,
Z.
, and
Steinfeld
,
A.
,
2014
, “
Transient Discrete-Granule Packed-Bed Reactor Model for Thermochemical Energy Storage
,”
Chem. Eng. Sci.
,
117
, pp.
465
478
.
You do not currently have access to this content.