Microscale numerical modeling is currently the main tool used in wind industry to assess local wind resources. This paper presents a systematic procedure to adjust computational fluid dynamics (CFD) predicted wind profiles to experimental measurements in order to minimize their differences. It can be applied when wind measurements are available. Data from ten masts with several measurement heights from the well-known Bolund hill experiment provided the observed wind profiles. Simulated profiles were calculated with windsim CFD model for the aforementioned site. Speed-up correction factors were defined through the least squares method to cross-correlate each mast as reference to all the others inside the Bolund hill domain. After, the observed and the adjusted wind profiles at the same position were compared. Moreover, root mean square errors (RMSEs) were used as a metric to evaluate the estimations and the ability of each position to be predicted and predictor. Results have shown that the quality of the adjustment process depends on the flow characteristics at each position related to the incoming wind direction. Most affected positions, i.e., when the airflow overcomes the Bolund hill escarpment, present the less accurate wind profile estimations. The reference mast should be installed upstream of the potential wind turbines' locations and after the main local characteristics of topographical changes.

References

References
1.
Rabl
,
A.
, and
Spadaro
,
J. V.
,
2016
, “
External Costs of Energy: How Much Is Clean Energy Worth?
,”
ASME J. Sol. Energy Eng.
,
138
(
4
), p. 040801.
2.
Zajaczkowski
,
F. J.
,
Haupt
,
S. E.
, and
Schmehl
,
K. J.
,
2011
, “
A Preliminary Study of Assimilating Numerical Weather Prediction Data Into Computational Fluid Dynamics Models for Wind Prediction
,”
J. Wind Eng. Ind. Aerodyn.
,
99
(
4
), pp.
320
329
.
3.
Jafari
,
S.
,
Chokani
,
N.
, and
Abhari
,
R. S.
,
2012
, “
An Immersed Boundary Method for Simulation of Wind Flow Over Complex Terrain
,”
ASME J. Sol. Energy Eng.
,
134
(
1
), p. 011006.
4.
Wang
,
Y.
,
Wang
,
J.
, and
Wei
,
X.
,
2015
, “
A Hybrid Wind Speed Forecasting Model Based on Phase Space Reconstruction Theory and Markov Model: A Case Study of Wind Farms in Northwest China
,”
Energy
,
91
, pp.
556
572
.
5.
Prospathopoulos
,
J. M.
,
Politis
,
E. S.
, and
Chaviaropoulos
,
P. K.
,
2012
, “
Application of a 3D RANS Solver on the Complex Hill of Bolund and Assessment of the Wind Flow Predictions
,”
J. Wind Eng. Ind. Aerodyn.
,
107–108
, pp.
149
159
.
6.
Meng
,
P. S.
,
2004
, “
CFD Modelling of Wind Flow Over Terrain
,” Ph.D. thesis, Nottingham University, Nottingham, UK.
7.
Ayotte
,
K. W.
,
2008
, “
Computational Modelling for Wind Energy Assessment
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(10–11), pp.
1571
1590
.
8.
Rasouli
,
A.
, and
Hangan
,
H.
,
2013
, “
Microscale Computational Fluid Dynamics Simulation for Wind Mapping Over Complex Topographic Terrains
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p. 041005.
9.
Albani
,
A.
, and
Ibrahim
,
M. Z.
,
2014
, “
An Assessment of Wind Energy Potential for Selected Sites in Malaysia Using Feed-In Tariff Criteria
,”
Wind Eng.
,
38
(
3
), pp.
249
259
.
10.
Blocken
,
B.
,
Hout
,
A.
,
Dekker
,
J.
, and
Weiler
,
O.
,
2015
, “
CFD Simulation of Wind Flow Over Natural Complex Terrain: Case Study With Validation by Field Measurements for Ria de Ferrol, Galicia, Spain
,”
J. Wind Eng. Ind. Aerodyn.
,
147
, pp.
43
57
.
11.
Simões
,
T.
, and
Estanqueiro
,
A.
,
2016
, “
A New Methodology for Urban Wind Resource Assessment
,”
Renewable Energy
,
89
, pp.
598
605
.
12.
Ayotte
,
K. W.
,
Davi
,
R. J.
, and
Coppin
,
P. A.
,
2001
, “
A Simple Temporal and Spatial Analysis of Flow in Complex Terrain in the Context of Wind Energy Modelling
,”
Boundary-Layer Meteorol.
,
98
(
2
), pp.
275
295
.
13.
Fallo
,
D.
,
2007
, “
Wind Energy Resource Evaluation in a Site of Central Italy by CFD Simulations
,”
M.Sc. dissertation
, Department of Mechanical Engineering, Cagliari University, Cagliari, Italy.
14.
Castro
,
F. A.
,
Palma
,
J. M. L. M.
, and
Lopes
,
A. S.
,
2003
, “
Simulation of the Askervein Flow—Part 1: Reynolds Averaged Navier–Stokes Equations (k ∈ Turbulence Model)
,”
Boundary-Layer Meteorol.
,
107
(
3
), pp.
501
530
.
15.
Bechmann
,
A.
,
Sørensen
,
N. N.
,
Berg
,
J.
,
Mann
,
J.
, and
Réthoré
,
P.-E.
,
2011
, “
The Bolund Experiment, Part II: Blind Comparison of Microscale Flow Models
,”
Boundary-Layer Meteorol.
,
141
(
2
), pp.
245
271
.
16.
Castellani
,
F.
,
Astolfi
,
D.
,
Burlando
,
M.
, and
Terzi
,
L.
,
2015
, “
Numerical Modelling for Wind Farm Operational Assessment in Complex Terrain
,”
J. Wind Eng. Ind. Aerodyn.
,
147
, pp.
320
329
.
17.
Troen
,
I.
, and
Petersen
,
E. L.
,
1989
,
European Wind Atlas
,
Risø National Laboratory
,
Roskilde, Denmark
.
18.
AWS Truepower
,
2010
, “
Openwind: Theoretical Basis and Validation, Version: 1.3
,” AWS Truepower, Albany, NY.
19.
Meissner
,
C.
,
2015
, “
WindSim Getting Started: WindSim 7
,” 8th edition, WindSim AS, Tønsberg, Norway.
20.
Clerc
,
A.
,
Anderson
,
M.
,
Stuart
,
P.
, and
Habenicht
,
G.
,
2012
, “
A Systematic Method for Quantifying Wind Flow Modelling Uncertainty in Wind Resource Assessment
,”
J. Wind Eng. Ind. Aerodyn.
,
111
, pp.
85
94
.
21.
Silva
,
J.
,
Marques da Silva
,
F.
,
Couto
,
A.
, and
Estanqueiro
,
A.
,
2015
, “
A Method to Correct the Flow Distortion of Offshore Wind Data Using CFD Simulation and Experimental Wind Tunnel Tests
,”
J. Wind Eng. Ind. Aerodyn.
,
140
, pp.
87
94
.
22.
Bechmann
,
A.
,
Berg
,
J.
,
Courtney
,
M. S.
,
Hans
,
E.
,
Mann
,
J.
, and
Sørensen
,
N. N.
,
2009
, “
The Bolund Experiment: Overview and Background
,” Wind Energy Division, Risø DTU, Roskilde, Denmark, Technical Report No.
Risø-R-1658
.
23.
Bechmann, A.,
2013
, “
Bolund Background
,” Wind Energy Division, Risø DTU, Roskilde, Denmark, accessed Oct. 5, 2016, http://www.bolund.vindenergi.dtu.dk/background
24.
Berg
,
J.
,
Mann
,
J.
,
Bechmann
,
A.
,
Courtney
,
M. S.
, and
Jørgensen
,
H. E.
,
2011
, “
The Bolund Experiment—Part I: Flow Over a Steep, Three-Dimensional Hill
,”
Boundary-Layer Meteorol.
,
141
(
2
), pp.
219
243
.
25.
Bechmann
,
A.
,
Johansen
,
J.
, and
Sørensen
,
N. N.
,
2007
, “
The Bolund Experiment—Design of Measurement Campaign Using CFD
,” Wind Energy Division, Risø DTU, Roskilde, Denmark, Technical Report No.
Risø-R-1623
.
26.
Bechmann, A.,
2016
, “
Bolund Blind Comparison
,” Wind Energy Division, Risø DTU, Roskilde, Denmark, accessed Oct. 8, 2015, http://www.bolund.vindenergi.dtu.dk/blind_comparison
27.
Versteeg
,
H. K. E.
, and
Malalasekera
,
W.
,
1995
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Longman Scientific & Technical
,
New York
.
28.
Theodoropoulos
,
P.
, and
Deligiorgis
,
N.
,
2009
, “
WindSim CFD Model Validation in a Mixed Coastal & Mountainous Region With Complex Terrain
,”
European Wind Energy Conference
(
EWEC
), Marseille, France, Mar. 16–19, pp. 3909–3918.
29.
Gravdahl
,
A. R.
,
1998
, “
Meso Scale Modeling With a Reynolds Averaged Navier-Stokes Solver: Assessment of Wind Resources Along the Norwegian Coast
,”
31st International Energy Agency Experts Meeting
, Roskilde, Denmark, pp. 31–45.
30.
Chow
,
F.
, and
Street
,
R.
,
2009
, “
Evaluation of Turbulence Closure Models for Large-Eddy Simulation Over Complex Terrain: Flow Over Askervein Hill
,”
J. Appl. Meteorol.
,
48
(
5
), pp.
1050
1065
.
31.
Lee
,
S.
,
Churchfield
,
M. J.
,
Moriarty
,
P. J.
, and
Michalakes
,
J.
,
2013
, “
A Numerical Study of Atmospheric and Wake Turbulence Impacts on Wind Turbine Fatigue Loadings
,”
ASME J. Sol. Energy Eng.
,
135
(3), p. 031001.
32.
Moreno
,
P.
,
Gravdahl
,
A.
, and
Romero
,
M.
,
2003
, “
Wind Flow Over Complex Terrain: Application of Linear and CFD Models
,”
European Wind Energy Conference and Exhibition
(
EWEC
), Madrid, Spain, June 16–19, pp.
16
19
.
33.
González-Longatt
,
F.
,
González
,
J. S.
,
Payán
,
M. B.
, and
Santos
,
J. M. R.
,
2014
, “
Wind-Resource Atlas of Venezuela Based on On-Site Anemometry Observation
,”
Renewable Sustainable Energy Rev.
,
39
, pp.
898
911
.
34.
Silva
,
A. F. G.
, and
Zaparoli
,
E. L.
,
2014
, “
The Use of CFD as a Tool for Studying the Wind Energy in Complex Terrain
,” 18th Congresso Brasileiro de Meteorologia (CBMET), Recife, Brazil, Nov. 3–6, p. 24.
You do not currently have access to this content.