A 7.2 kW (electric input) solar simulator was designed in order to perform accelerated testing on absorber materials for concentrating solar power (CSP) technologies. computer-aided design (cad) software integrating a ray-tracing tool was used to select appropriate components and optimize their positioning in order to achieve the desired concentration. The simulator comprises four identical units, each made out of an ellipsoidal reflector, a metal halide lamp, and an adjustable holding system. A single unit was characterized and shows an experimental average irradiance of 257 kW m−2 on a 25.4 mm (1 in) diameter spot. Shape, spot size, and average irradiance are in good agreement with the model predictions, provided the emitting arc element model is realistic. The innovative four-lamp solar simulator potentially demonstrates peak irradiance of 1140 kW m−2 and average irradiance of 878 kW m−2 over a 25.4 mm diameter area. The electric-to-radiative efficiency is about 0.86. The costs per radiative and electric watt are calculated at $2.31 W−1 and $1.99 W−1, respectively. An upgraded installation including a sturdier structure, computer-controlled lamps, a more reliable lamp holding system, and safety equipment yields a cost per electric watt of about $3.60 W−1 excluding labor costs.

References

References
1.
Petrasch
,
J.
,
Coray
,
P.
,
Meier
,
A.
,
Brack
,
M.
,
Häberling
,
P.
,
Wuillemin
,
D.
, and
Steinfeld
,
A.
,
2006
, “
A Novel 50 kW 11,000 Suns High-Flux Solar Simulator Based on an Array of Xenon Arc Lamps
,”
ASME J. Sol. Energy Eng.
,
129
(4), pp.
405
411
.
2.
Alxneit
,
I.
, and
Schmit
,
H.
,
2011
, “
Spectral Characterization of PSI’s High-Flux Solar Simulator
,”
ASME J. Sol. Energy Eng.
,
134
(1), p.
011013
.
3.
Hirsch
,
D.
,
Zedtwitz
,
P. v.
,
Osinga
,
T.
,
Kinamore
,
J.
, and
Steinfeld
,
A.
,
2003
, “
A New 75 kW High-Flux Solar Simulator for High-Temperature Thermal and Thermochemical Research
,”
ASME J. Sol. Energy Eng.
,
125
(
1
), pp.
117
120
.
4.
Bader
,
R.
,
Haussener
,
S.
, and
Lipiński
,
W.
,
2014
, “
Optical Design of Multisource High-Flux Solar Simulators
,”
ASME J. Sol. Energy Eng.
,
137
(
2
), p.
021012
.
5.
Krueger
,
K. R.
,
Lipiński
,
W.
, and
Davidson
,
J. H.
,
2013
, “
Operational Performance of the University of Minnesota 45 kWe High-Flux Solar Simulator
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
044501
.
6.
Sarwar
,
J.
,
Georgakis
,
G.
,
LaChance
,
R.
, and
Ozalp
,
N.
,
2014
, “
Description and Characterization of an Adjustable Flux Solar Simulator for Solar Thermal, Thermochemical and Photovoltaic Applications
,”
Sol. Energy
,
100
, pp.
179
194
.
7.
Codd
,
D. S.
,
Carlson
,
A.
,
Rees
,
J.
, and
Slocum
,
A. H.
,
2010
, “
A Low Cost High Flux Solar Simulator
,”
Sol. Energy
,
84
(
12
), pp.
2202
2212
.
8.
Optiforms
,
1996
, “
Optiforms E813-7 Drawing
,” Optiforms, Temecula, CA, accessed Apr. 17, 2017, http://cdn.optiforms.com/wp-content/uploads/2016/03/E813-r.pdf
9.
Bass
,
M.
,
Van Stryland
,
E.
,
Williams
,
D.
, and
Wolfe
,
W.
,
1995
,
Handbook of Optics
,
2nd ed.
, Vol.
2
,
McGraw-Hill
, New York.
10.
Osram Sylvania
, 2008, “
XBO—Theater Lamps
,” Osram Sylvania, Wilmington, MA, accessed Feb. 9, 2015, http://assets.sylvania.com/assets/documents/ENGR_BLTN11.161355cc-1d94-4996-b6cd-a3001fea6f1a.pdf
11.
NREL
, 2003, “
Reference Solar Spectral Irradiance: Air Mass 1.5
,” National Renewable Energy Laboratory, Golden, CO, accessed Feb. 9, 2015, http://rredc.nrel.gov/solar/spectra/am1.5/
12.
Kockott
,
D.
, and
Schoenlein
,
A.
,
2012
, “
To What Extent Does the Radiation of a Solar Simulator Meet a ‘Reference Sun’? A Quantitative Approach
,”
Polym. Test.
,
31
(
5
), pp.
710
715
.
13.
Osram Sylvania
, “
HMI 18000 W/SE XS Product Information
,” Osram Sylvania, Wilmington, MA, accessed Apr. 19, 2017, https://www.osram.com/osram_com/products/lamps/specialty-lamps/metal-halide-lamps/hmi/index.jsp?productId=ZMP_56241
14.
Alxneit
,
I.
, and
Dibowski
,
G.
,
2011
, “
R12.5 Solar Simulator Evaluation Report
,” Solar Facilities for the European Research Area Project, European Union, Brussels, Belgium,
Deliverable 12.5
.
15.
Wang
,
W.
,
Aichmayer
,
L.
,
Laumert
,
B.
, and
Fransson
,
T.
,
2014
, “
Design and Validation of a Low-Cost High-Flux Solar Simulator Using Fresnel Lens Concentrators
,”
SolarPACES 2013 International Conference
, Las Vegas, NV, Sept. 17–20, Vol.
49
, pp.
2221
2230
.
16.
Gill
,
R.
,
Bush
,
E.
,
Haueter
,
P.
, and
Loutzenhiser
,
P.
,
2015
, “
Characterization of a 6 kW High-Flux Solar Simulator With an Array of Xenon Arc Lamps Capable of Concentrations of Nearly 5000 Suns
,”
Rev. Sci. Instrum.
,
86
(
12
), p.
125107
.
You do not currently have access to this content.