Solar thermal coatings are designed to achieve the highest incident solar flux into the receiver of a tower solar plant. These materials are subjected to extreme working conditions of temperature and solar concentrated radiation. Much effort is being made to develop a durable and high absorptive coating that can provide an excellent solar to heat conversion efficiency. Complex deposition techniques (PVD, CVD, electrodeposition, etc.) are developed and tested to achieve solar selectivity. High solar absorptance paints are an alternative technique, that is, easy to apply and implement in the field. In paint, pigments are the compound that provides high absorptance values, whose stability impacts the durability of optical properties. The search for new selective solar pigments for solar receivers is a promising route to improve the efficiency of this technology. In this work, novel nanocomposites were synthesized from low-cost organic materials such as table sugar. Promising results were obtained when intercalated and calcined in the laminar structure of montmorillonite, a type of smectite clay. The pigments were tested in a paint format on metallic coupons at different temperatures to obtain absorptivities above 96% of absorptance after 24 h at 700  °C. Further experiments are still needed to obtain optimum conditions to maximize the coating's absorptivity and durability at high temperature.

References

References
1.
Ning
,
X.
, and
Lovell
,
M. R.
,
2002
, “
On the Sliding Friction Characteristics of Unidirectional Continuous FRP Composites
,”
ASME J. Tribol.
,
124
(
1
), pp.
5
13
.
2.
Barnes
,
M.
,
2001
, “
Stresses in Solenoids
,”
J. Appl. Phys.
,
48
(
5
), pp.
2000
2008
.
3.
Jones
,
J.
,
2000
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
, Chap. 6.
4.
Lee
,
Y.
,
Korpela
,
S. A.
, and
Horne
,
R. N.
,
1982
, “
Structure of Multi-Cellular Natural Convection in a Tall Vertical Annulus
,”
7th International Heat Transfer Conference
,
Epstein
,
N.
,
Grigull, U.,Gosse
,
J.
,
Sastri
,
V. M. K.
,
Sideman
,
S.
,
Cumo
,
M.
,
Mizushina
,
T.
,
de Vries
,
D. A.
,
Simpson
,
H. C.
,
Hewitt
,
G. F.
,
Bergles
,
A. E.
,
Goldstein
,
R. J.
,
Styrikovich
,
M. A.
, and
Majcen
,
M.
,
Hemisphere
,
Washington, DC
, Vol.
2
, pp.
221
226
.
5.
Hashish
,
M.
,
2000
, “
600 MPa Waterjet Technology Development
,”
ASME-PVP
,
406
, pp.
135
140
.
6.
Watson
,
D. W.
,
1997
, “
Thermodynamic Analysis
,”
ASME
Paper No. 97-GT-288.
7.
Tung
,
C. Y.
,
1982
, “
Evaporative Heat Transfer in the Contact Line of a Mixture
,” Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY.
8.
Kwon
,
O. K.
, and
Pletcher
,
R. H.
,
1981
, “
Prediction of the Incompressible Flow Over a Rearward-Facing Step
,” Iowa State University, Ames, IA,
Report No. HTL-26, CFD-4
.
9.
Kudish
,
I. I.
2001
, “
A Conformal Lubricated Contact of Cylindrical Surfaces Involved in a Non-Steady Motion
,”
ASME. J. Tribol.
,
124
(
1
), pp.
62
71
.
10.
Bi
,
D.
,
Li
,
Q.
, and
Chen
,
G. X.
,
2014
, “
Synthesis of Polyhedral Oligomeric Silsesquioxane-Modified Organic Montmorillonites and Their Nanocomposites With Poly(l-Lactide)
,”
Appl. Clay Sci.
,
87
, pp.
34
39
.
11.
Bakandritsos
,
A.
,
Steriotis
,
T.
, and
Petridis
,
D.
,
2004
, “
High Surface Area Montmorillonite−Carbon Composites and Derived Carbons
,”
Chem. Mater.
,
16
(
8
), pp.
1551
1559
.
12.
Galimberti
,
M.
,
Cipolletti
,
V.
, and
Coombs
,
M.
,
2013
, “
Applications of Clay–Polymer Nanocomposites
,”
Handbook of Clay Science
,
Elsevier
,
Amsterdam
,
The Netherlands
, pp.
539
586
.
13.
Perrin
,
F. X.
,
Bruzaud
,
S.
, and
Grohens
,
Y.
,
2013
, “
Structure and Thermal Behaviour of Polyhedral Oligomeric Silsesquioxane Modified Montmorillonite
,”
Appl. Clay Sci.
,
49
(3), pp.
113
119
.
14.
Jerman
,
I.
,
Koželj
,
M.
, and
Orel
,
B.
2010
, “
The Effect of Polyhedral Oligomeric Silsesquioxane Dispersant and Low Surface Energy Additives on Spectrally Selective Paint Coatings With Self-Cleaning Properties
,”
Sol. Energy Mater. Sol. Cells
,
94
(
2
), pp.
232
245
.
15.
Meyers
,
C. J.
,
Shah
,
S. D.
,
Patel
,
S. C.
,
Sneeringer
,
R. M.
,
Bessel
,
C. A.
,
Dollahon
,
N. R.
,
Leising
,
R. A.
, and
Takeuchi
,
E. S.
,
2001
, “
Templated Synthesis of Carbon Materials From Zeolites (Y, Beta, and ZSM-5) and a Montmorillonite Clay (K10): Physical and Electrochemical Characterization
,”
J. Phys. Chem. B
,
105
(
11
), pp.
2143
2152
.
16.
Pinnavaia
,
T. J.
,
1983
, “
Intercalated Clay Catalysts
,”
Science
,
220
(
4595
), pp.
365
371
.
17.
Sonobe
,
N.
,
Kyotani
,
T.
, and
Tomita
,
A.
,
1990
, “
Carbonization of Polyfurfuryl Alcohol and Polyvinyl Acetate Between the Lamellae of Montmorillonite
,”
Carbon
,
28
(
4
), pp.
483
488
.
18.
Zhao
,
F.
,
Wan
,
C.
,
Bao
,
X.
, and
Kandasubramanian
,
B.
,
2009
Modification of Montmorillonite With Aminopropylisooctyl Polyhedral Oligomeric Silsequioxane
,”
J. Colloid Interface Sci.
,
333
(
1
), pp.
164
170
.
19.
Zhu
,
H.
,
Vansant
,
E.
, and
Lu
,
G.
,
1999
, “
Development of Composite Adsorbents of Carbon and Intercalated Clay for N2 and O2 Adsorption: A Preliminary Study
,”
J. Colloid Interface Sci.
,
210
(
2
), pp.
352
359
.
20.
Liu
,
T.
,
Li
,
Y.
,
Du
,
Q.
,
Sun
,
J.
,
Jiao
,
Y.
,
Yang
,
G.
,
Wang
,
Z.
,
Xia
,
Y.
,
Zhang
,
W.
, and
Wang
,
K.
,
2012
, “
Adsorption of Methylene Blue From Aqueous Solution by Graphene, Colloids and Surfaces B
,”
Biointerfaces
,
90
, pp.
197
203
.
21.
Akhavan
,
O.
,
2010
, “
The Effect of Heat Treatment on Formation of Graphene Thin Films From Graphene Oxide Nanosheets
,”
Carbon
,
48
(
2
), pp.
509
519
.
22.
Ferrari
,
A.
,
Meyer
,
J.
,
Scardaci
,
V.
,
Casiraghi
,
C.
,
Lazzeri
,
M.
,
Mauri
,
F.
,
Piscanec
,
S.
,
Jiang
,
D.
,
Novoselov
,
K.
, and
Roth
,
S.
,
2006
, “
The Raman Fingerprint of Graphene Layers
,”
Phys. Rev. Lett.
,
97
(
18
), p.
187401
.
23.
Bandosz
,
T. J.
,
Jagiello
,
J.
,
Putyera
,
K.
, and
Schwarz
,
J. A.
1996
, “
Pore Structure of Carbon-Mineral Nanocomposites and Derived Carbons Obtained by Template Carbonization
,”
Chem. Mater.
,
8
(
8
), pp.
2023
2029
.
You do not currently have access to this content.