This work reports a numerical investigation of the transient operation of a 100-kWth solar reactor for performing the high-temperature step of the Zn/ZnO thermochemical cycle. This two-step redox cycle comprises (1) the endothermal dissociation of ZnO to Zn and O2 above 2000 K using concentrated solar energy, and (2) the subsequent oxidation of Zn with H2O/CO2 to produce H2/CO. The performance of the 100-kWth solar reactor is investigated using a dynamic numerical model consisting of two coupled submodels. The first is a Monte Carlo (MC) ray-tracing model applied to compute the spatial distribution maps of incident solar flux absorbed on the reactor surfaces when subjected to concentrated solar irradiation delivered by the PROMES-CNRS MegaWatt Solar Furnace (MWSF). The second is a heat transfer and thermochemical model that uses the computed maps of absorbed solar flux as radiation boundary condition to simulate the coupled processes of chemical reaction and heat transfer by radiation, convection, and conduction. Experimental validation of the solar reactor model is accomplished by comparing solar radiative power input, temperatures, and ZnO dissociation rates with measured data acquired with the 100-kWth solar reactor at the MWSF. Experimentally obtained solar-to-chemical energy conversion efficiencies are reported and the various energy flows are quantified. The model shows the prominent influence of reaction kinetics on the attainable energy conversion efficiencies, revealing the potential of achieving ηsolar-to-chemical = 16% provided the mass transport limitations on the ZnO reaction interface were overcome.

References

References
1.
Steinfeld
,
A.
,
2005
, “
Solar Thermochemical Production of Hydrogen––A Review
,”
Sol. Energy
,
78
(
5
), pp.
603
615
.
2.
Abanades
,
S.
,
Charvin
,
P.
,
Flamant
,
G.
, and
Neveu
,
P.
,
2006
, “
Screening of Water-Splitting Thermochemical Cycles Potentially Attractive for Hydrogen Production by Concentrated Solar Energy
,”
Energy
,
31
(
14
), pp.
2805
2822
.
3.
Romero
,
M.
, and
Steinfeld
,
A.
,
2012
, “
Concentrating Solar Thermal Power and Thermochemical Fuels
,”
Energy Environ. Sci.
,
5
(
11
), pp.
9234
9245
.
4.
Wurzbacher
,
J. A.
,
Gebald
,
C.
,
Piatkowski
,
N.
, and
Steinfeld
,
A.
,
2012
, “
Concurrent Separation of CO2 and H2O From Air by a Temperature-Vacuum Swing Adsorption/Desorption Cycle
,”
Environ. Sci. Technol.
,
46
(
16
), pp.
9191
9198
.
5.
Choi
,
S.
,
Gray
,
M. L.
, and
Jones
,
C. W.
,
2011
, “
Amine-Tethered Solid Adsorbents Coupling High Adsorption Capacity and Regenerability for CO2 Capture From Ambient Air
,”
ChemSusChem
,
4
(
5
), pp.
628
635
.
6.
Steinfeld
,
A.
,
2002
, “
Solar Hydrogen Production Via a Two-Step Water-Splitting Thermochemical Cycle Based on Zn/ZnO Redox Reactions
,”
Int. J. Hydrogen Energy
,
27
(
6
), pp.
611
619
.
7.
Perkins
,
C.
, and
Weimer
,
A.
,
2004
, “
Likely Near-Term Solar-Thermal Water Splitting Technologies
,”
Int. J. Hydrogen Energy
,
29
(
15
), pp.
1587
1599
.
8.
Loutzenhiser
,
P. G.
,
Meier
,
A.
, and
Steinfeld
,
A.
,
2010
, “
Review of the Two-Step H2O/CO2-Splitting Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions
,”
Materials (Basel)
,
3
(
11
), pp.
4922
4938
.
9.
Muhich
,
C. L.
,
Evanko
,
B. W.
,
Weston
,
K. C.
,
Lichty
,
P.
,
Liang
,
X.
,
Martinek
,
J.
,
Musgrave
,
C. B.
, and
Weimer
,
A. W.
,
2013
, “
Efficient Generation of H2 by Splitting Water With an Isothermal Redox Cycle
,”
Science
,
341
(
6145
), pp.
540
542
.
10.
Roeb
,
M.
,
Neises
,
M.
,
Monnerie
,
N.
,
Call
,
F.
,
Simon
,
H.
,
Sattler
,
C.
,
Schmücker
,
M.
, and
Pitz-Paal
,
R.
,
2012
, “
Materials-Related Aspects of Thermochemical Water and Carbon Dioxide Splitting: A Review
,”
Materials (Basel)
,
5
(
12
), pp.
2015
2054
.
11.
Loutzenhiser
,
P. G.
, and
Steinfeld
,
A.
,
2011
, “
Solar Syngas Production From CO2 and H2O in a Two-Step Thermochemical Cycle Via Zn/ZnO Redox Reactions: Thermodynamic Cycle Analysis
,”
Int. J. Hydrogen Energy
,
36
(
19
), pp.
12141
12147
.
12.
Schunk
,
L. O.
, and
Steinfeld
,
A.
,
2009
, “
Kinetics of the Thermal Dissociation of ZnO Exposed to Concentrated Solar Irradiation Using a Solar-Driven Thermogravimeter in the 1800–2100 K Range
,”
AIChE J.
,
55
(
6
), pp.
1497
1504
.
13.
Perkins
,
C.
,
Lichty
,
P.
, and
Weimer
,
A. W.
,
2007
, “
Determination of Aerosol Kinetics of Thermal ZnO Dissociation by Thermogravimetry
,”
Chem. Eng. Sci.
,
62
(
21
), pp.
5952
5962
.
14.
Schunk
,
L. O.
,
Lipiński
,
W.
, and
Steinfeld
,
A.
,
2009
, “
Ablative Heat Transfer in a Shrinking Packed-Bed of ZnO Undergoing Solar Thermal Dissociation
,”
AIChE J.
,
55
(
7
), pp.
1659
1666
.
15.
Fletcher
,
E. A.
,
1999
, “
Solarthermal and Solar Quasi-Electrolytic Processing and Separations: Zinc From Zinc Oxide as an Example
,”
Ind. Eng. Chem. Res.
,
38
(
6
), pp.
2275
2282
.
16.
Müller
,
R.
, and
Steinfeld
,
A.
,
2008
, “
H2O-Splitting Thermochemical Cycle Based on ZnO/Zn-Redox: Quenching the Effluents From the ZnO Dissociation
,”
Chem. Eng. Sci.
,
63
(
1
), pp.
217
227
.
17.
Gstoehl
,
D.
,
Brambilla
,
A.
,
Schunk
,
L. O.
, and
Steinfeld
,
A.
,
2008
, “
A Quenching Apparatus for the Gaseous Products of the Solar Thermal Dissociation of ZnO
,”
J. Mater. Sci.
,
43
(
14
), pp.
4729
4736
.
18.
Kogan
,
A.
, and
Kogan
,
M.
,
2002
, “
The Tornado Flow Configuration—An Effective Method for Screening of a Solar Reactor Window
,”
ASME J. Sol. Energy Eng.
,
124
(
3
), pp.
206
214
.
19.
Koepf
,
E. E.
,
Lindemer
,
M. D.
,
Advani
,
S. G.
, and
Prasad
,
A. K.
,
2013
, “
Experimental Investigation of Vortex Flow in a Two-Chamber Solar Thermochemical Reactor
,”
ASME J. Fluids Eng.
,
135
(
11
), p.
111103
.
20.
Koepf
,
E.
,
Villasmil
,
W.
, and
Meier
,
A.
,
2015
, “
High Temperature Flow Visualization and Aerodynamic Window Protection of a 100-kWth Solar Thermochemical Receiver-Reactor for ZnO Dissociation
,”
Energy Procedia
,
69
, pp.
1780
1789
.
21.
Perkins
,
C.
,
2008
, “
Thermal ZnO Dissociation in a Rapid Aerosol Reactor as Part of a Solar Hydrogen Production Cycle
,”
Int. J. Hydrogen Energy
,
33
(
2
), pp.
499
510
.
22.
Koepf
,
E.
,
Advani
,
S. G.
,
Steinfeld
,
A.
, and
Prasad
,
A. K.
,
2012
, “
A Novel Beam-Down, Gravity-Fed, Solar Thermochemical Receiver/Reactor for Direct Solid Particle Decomposition: Design, Modeling, and Experimentation
,”
Int. J. Hydrogen Energy
,
37
(
22
), pp.
16871
16887
.
23.
Möller
,
S.
, and
Palumbo
,
R.
,
2001
, “
Solar Thermal Decomposition Kinetics of ZnO in the Temperature Range 1950–2400 K
,”
Chem. Eng. Sci.
,
56
(
15
), pp.
4505
4515
.
24.
Koepf
,
E.
,
Villasmil
,
W.
, and
Meier
,
A.
,
2016
, “
Pilot-Scale Solar Reactor Operation and Characterization for Fuel Production Via the Zn/ZnO Thermochemical Cycle
,”
Appl. Energy
,
165
, pp.
1004
1023
.
25.
Chambon
,
M.
,
Abanades
,
S.
, and
Flamant
,
G.
,
2010
, “
Design of a Lab-Scale Rotary Cavity-Type Solar Reactor for Continuous Thermal Dissociation of Volatile Oxides Under Reduced Pressure
,”
ASME J. Sol. Energy Eng.
,
132
(
2
), p.
021006
.
26.
Villasmil
,
W.
,
Brkic
,
M.
,
Wuillemin
,
D.
,
Meier
,
A.
, and
Steinfeld
,
A.
,
2013
, “
Pilot Scale Demonstration of a 100-kWth Solar Thermochemical Plant for the Thermal Dissociation of ZnO
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p.
011017
.
27.
Klausner
,
J. F.
,
Li
,
L.
,
Singh
,
A.
,
Yeung
,
N. A.
,
Mei
,
R.
,
Hahn
,
D.
, and
Petrasch
,
J.
,
2014
, “
The Role of Heat Transfer in Sunlight to Fuel Conversion Using High Temperature Solar Thermochemical Reactors
,”
15th International Heat Transfer Conference
(
IHTC
), Kyoto, Japan, Aug. 10–15, Paper No. IHTC15-KN28.
28.
Coray
,
P.
,
Lipiński
,
W.
, and
Steinfeld
,
A.
,
2010
, “
Experimental and Numerical Determination of Thermal Radiative Properties of ZnO Particulate Media
,”
ASME J. Heat Transfer
,
132
(
1
), p.
012701
.
29.
Lipiński
,
W.
,
Thommen
,
D.
, and
Steinfeld
,
A.
,
2006
, “
Unsteady Radiative Heat Transfer Within a Suspension of ZnO Particles Undergoing Thermal Dissociation
,”
Chem. Eng. Sci.
,
61
(
21
), pp.
7029
7035
.
30.
Li
,
L.
,
Chen
,
C.
,
Singh
,
A.
,
Rahmatian
,
N.
,
AuYeung
,
N.
,
Randhir
,
K.
,
Mei
,
R.
,
Klausner
,
J. F.
,
Hahn
,
D.
, and
Petrasch
,
J.
,
2016
, “
A Transient Heat Transfer Model for High Temperature Solar Thermochemical Reactors
,”
Int. J. Hydrogen Energy
,
41
(
4
), pp.
2307
2325
.
31.
Villasmil
,
W.
,
Meier
,
A.
, and
Steinfeld
,
A.
,
2013
, “
Dynamic Modeling of a Solar Reactor for Zinc Oxide Thermal Dissociation and Experimental Validation Using IR Thermography
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p.
011015
.
32.
Schunk
,
L. O.
,
Lipiński
,
W.
, and
Steinfeld
,
A.
,
2009
, “
Heat Transfer Model of a Solar Receiver-Reactor for the Thermal Dissociation of ZnO—Experimental Validation at 10 kW and Scale-Up to 1 MW
,”
Chem. Eng. J.
,
150
(
2–3
), pp.
502
508
.
33.
PROMES-CNRS
,
2013
, “
Mega Watt Solar Furnace (MWSF)
,” Le Centre national de la recherche scientifique, Paris, accessed May 7, 2013, http://www.promes.cnrs.fr/index.php?page=mega-watt-solar-furnace
34.
Trombe
,
F.
, and
Le Phat Vinh
,
A.
,
1973
, “
Thousand kW Solar Furnace, Built by the National Center of Scientific Research, in Odeillo (France)
,”
Sol. Energy
,
15
(
1
), pp.
57
61
.
35.
Petrasch
,
J.
,
2010
, “
A Free and Open Source Monte Carlo Ray Tracing Program for Concentrating Solar Energy Research
,”
ASME
Paper No. ES2010-90206.
36.
Johnston
,
G.
,
1995
, “
On the Analysis of Surface Error Distributions on Concentrated Solar Collectors
,”
ASME J. Sol. Energy Eng.
,
117
(
4
), pp.
294
296
.
37.
Gardon
,
R.
,
1960
, “
A Transducer for the Measurement of Heat-Flow Rate
,”
ASME J. Heat Transfer
,
82
(
4
), pp.
396
398
.
38.
Kribus
,
A.
,
Vishnevetsky
,
I.
,
Yogev
,
A.
, and
Rubinov
,
T.
,
2004
, “
Closed Loop Control of Heliostats
,”
Energy
,
29
(
5–6
), pp.
905
913
.
39.
Moüller
,
S.
, and
Palumbo
,
R.
,
2001
, “
The Development of a Solar Chemical Reactor for the Direct Thermal Dissociation of Zinc Oxide
,”
ASME J. Sol. Energy Eng.
,
123
(
2
), pp.
83
90
.
40.
Touloukian
,
Y.
, and
DeWitt
,
D. P.
,
1972
,
Thermal Radiative Properties: Nonmetallic Solids, Thermophysical Properties of Matter
, Vol.
8
,
IFI/Plenum
,
New York
.
41.
ASTM
,
2013
, “
Standard Tables for Reference Solar Spectral Irradiance: Direct Normal and Hemispherical on 37 deg Tilted Surface
,” American Society for Testing and Material, West Conshohocken, PA,
Standard No. ASTM G173–03
.http://rredc.nrel.gov/solar/spectra/am1.5/astmg173/astmg173.html
42.
Roine
,
A.
,
1997
, “
Outokumpu HSC Chemistry 5.0
,”
Outokumpu Research
,
Pori, Finland
.
43.
Siegel
,
R.
, and
Howell
,
J.
,
2002
,
Thermal Radiation Heat Transfer
,
Taylor and Francis
,
New York
.
44.
Siegel
,
R.
,
1973
, “
Net Radiation Method for Enclosure Systems Involving Partially Transparent Walls
,” Washington, DC, NASA Report No. TN D-7384.
45.
Kitamura
,
R.
,
Pilon
,
L.
, and
Jonasz
,
M.
,
2007
, “
Optical Constants of Silica Glass From Extreme Ultraviolet to Far Infrared at Near Room Temperature
,”
Appl. Opt.
,
46
(
33
), pp.
8118
8133
.
46.
Modest
,
M. F.
,
2003
,
Radiative Heat Transfer
,
Academic Press
,
Cambridge, MA
.
47.
Petrasch
,
J.
,
Coray
,
P.
,
Meier
,
A.
,
Brack
,
M.
,
Haüberling
,
P.
,
Wuillemin
,
D.
, and
Steinfeld
,
A.
,
2007
, “
A Novel 50 kW 11,000 Suns High-Flux Solar Simulator Based on an Array of Xenon Arc Lamps
,”
ASME J. Sol. Energy Eng.
,
129
(
4
), pp.
405
411
.
48.
Shackelford
,
J. F.
, and
Alexander
,
W.
,
2001
,
Thermal Properties of Materials
,
CRC Press
,
Boca Raton, FL
.
49.
JAHM Software
,
1999
, “
MPDB
,”
JAHM Software, Inc.
,
North Reading, MA
.
50.
RATH Group
,
2012
, “
ALTRA KVS High Temperature Vacuum Formed Boards and Shapes
,”
RATH, Inc.
,
Newark, DE
, accessed Oct. 18, 2012, http://www.rath-usa.com/kvs.php
51.
Heraeus
,
2013
, “
Quartz Glass—Thermal Properties
,”
Heraeus, Hanau
,
Germany
, accessed Oct. 18, 2012, http://www.heraeus-quarzglas.com
52.
Promat
,
2013
, “
Promat Handbook—High Temperature Insulation
,”
Promat International
,
Tisselt, Belgium
, accessed June 22, 2013, www.promat-hti.be
53.
Olorunyolemi
,
T.
,
Birnboim
,
A.
,
Carmel
,
Y.
,
Wilson
,
O. C.
,
Lloyd
, I
. K.
,
Smith
,
S.
, and
Campbell
,
R.
,
2004
, “
Thermal Conductivity of Zinc Oxide: From Green to Sintered State
,”
J. Am. Ceram. Soc.
,
85
(
5
), pp.
1249
1253
.
54.
Knovel
,
2012
, “
Knovel Critical Tables (2nd Edition)—Thermodynamic Properties of Inorganic Substances
,”
Knovel
,
New York
, accessed Oct. 20, 2012, http://www.knovel.com/web
55.
Archer
,
D. G.
,
1993
, “
Thermodynamic Properties of Synthetic Sapphire (α-Al2O3), Standard Reference Material 720 and the Effect of Temperature-Scale Differences on Thermodynamic Properties
,”
J. Phys. Chem. Ref. Data
,
22
(
6
), p.
1441
.
56.
Pankratz
,
L.
,
1982
,
Thermodynamic Properties of Elements and Oxides
,
U.S. Bureau of Mines Bulletin
,
Washington, DC
, p. 672.
57.
Martienssen
,
W.
, and
Warlimont
,
H.
,
2006
,
Springer Handbook of Condensed Matter and Materials Data
,
Springer
,
Berlin, Germany
.
58.
Dombrovsky
,
L.
,
Schunk
,
L.
,
Lipiński
,
W.
, and
Steinfeld
,
A.
,
2009
, “
An Ablation Model for the Thermal Decomposition of Porous Zinc Oxide Layer Heated by Concentrated Solar Radiation
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2444
2452
.
59.
Haring
,
H.-W.
,
2007
,
Industrial Gas Processing
,
Wiley
,
New York
.
60.
L'vov
,
B. V.
,
2001
, “
The Physical Approach to the Interpretation of the Kinetics and Mechanisms of Thermal Decomposition of Solids: The State of the Art
,”
Thermochim. Acta
,
373
(
2
), pp.
97
124
.
61.
Cussler
,
E. L.
,
2009
,
Diffusion: Mass Transfer in Fluid Systems
,
Cambridge University Press
,
New York
.
62.
Ezbiri
,
M.
,
Allen
,
K. M.
,
Gàlvez
,
M. E.
,
Michalsky
,
R.
, and
Steinfeld
,
A.
,
2015
, “
Design Principles of Perovskites for Thermochemical Oxygen Separation
,”
ChemSusChem
,
8
(
11
), pp.
1966
1971
.
63.
Hänchen
,
M.
,
Stiel
,
A.
,
Jovanovic
,
Z. R.
, and
Steinfeld
,
A.
,
2012
, “
Thermally Driven Copper Oxide Redox Cycle for the Separation of Oxygen From Gases
,”
Ind. Eng. Chem. Res.
,
51
(
20
), pp.
7013
7021
.
You do not currently have access to this content.