Within the solar energy technologies, the hybrid photovoltaic–thermal (PVT) systems offer an attractive option because the absorbed solar radiation is converted into thermal and electrical energies (the conversion can be done separately or simultaneously). In this study, an attempt has been made to evaluate the theoretical and practical performances and evaluation of a hybrid PVT collector based on a new integrated absorber configuration function of climatic and design parameters. Our objective is to obtain a more efficient use of solar energy by cheaper materials and simpler implementation. On the first hand, we considered two different configurations of hybrid collectors which are defined as PVT water with absorber in parallel vertical tubes (model I) and a PVT with absorber in an enclosure (model II). On the second hand, we presented a new integrated absorber configuration for hybrid collector; then we compared it to the two previous models. The last proposed design has the advantage of a simpler implementation and a lower cost compared to other configurations of PVT hybrid collectors. A computer simulation program has been developed in order to calculate the thermal and electrical parameters of the PVT–water collector. The obtained simulation results are found to be in good agreement with the experimental measurements. For a sample climatic, operating, and design parameter, the calculated thermal and electrical energies of the new configuration of PVT are about 125.36 W and 40 W, respectively.

References

References
1.
Wu
,
S. Y.
,
Zhang
,
Q. L.
,
Xiao
,
L.
, and
Guo
,
F. H.
,
2011
, “
A Heat Pipe Photovoltaic/Thermal (PV/T) Hybrid System and Its Performance Evaluation
,”
Energy Build.
,
43
(
12
), pp.
3558
3567
.
2.
Fudholi
,
A.
,
Sopian
,
K.
,
Yazdi
,
M. H.
,
Ruslan
,
M. H.
,
Ibrahim
,
A.
, and
Kazem
,
H. A.
,
2014
, “
Performance Analysis of Photovoltaic Thermal (PVT) Water Collectors
,”
Energy Convers. Manage.
,
78
, pp.
641
651
.
3.
Aste
,
N.
,
Pero
,
C. D.
, and
Leonforte
,
F.
,
2012
, “
Optimization of Solar Thermal Fraction in PVT Systems
,”
Energy Proc.
,
30
, pp.
8
18
.
4.
Sobhnamayan
,
F.
,
Sarhaddi
,
F.
,
Alavi
,
M. A.
,
Farahat
,
S.
, and
Yazdanpanahi
,
J.
,
2014
, “
Optimization of a Solar Photovoltaic Thermal (PV/T) Water Collector Based on Exergy Concept
,”
Renewable Energy
,
68
, pp.
356
365
.
5.
Chow
,
T. T.
,
2010
, “
A Review on Photovoltaic/Thermal Hybrid Solar Technology
,”
Appl. Energy
,
87
(
2
), pp.
365
379
.
6.
Colangelo
,
G.
,
Favale
,
E.
,
Miglietta
,
P.
, and
de Risi
,
A.
,
2016
, “
Innovation in Flat Solar Thermal Collectors: A Review of the Last Ten Years Experimental Results
,”
Renewable Sustainable Energy Rev.
,
57
, pp.
1141
1159
.
7.
Tiwari
,
A.
, and
Sodha
,
M. S.
,
2007
, “
Parametric Study of Various Configurations of Hybrid PV/Thermal Air Collector: Experimental Validation of Theoretical Model
,”
Sol. Energy Mater. Sol. Cells
,
91
(
1
), pp.
17
28
.
8.
Pei
,
G.
,
Fu
,
H.
,
Zhang
,
T.
, and
Ji
,
J.
,
2011
, “
A Numerical and Experimental Study on a Heat Pipe PV/T System
,”
Sol. Energy
,
85
(
5
), pp.
911
921
.
9.
Zondag
,
H. A.
,
Vries
,
D. W. D.
,
Helden
,
W. G. J. V.
,
Zolingen
,
R. J. C. V.
, and
Steenhoven
,
A. A. V.
,
2003
, “
The Yield of Different Combined PV-Thermal Collector Designs
,”
Sol. Energy
,
74
(
3
), pp.
253
269
.
10.
Fudholi
,
A.
,
Sopian
,
K.
,
Yazdi
,
M. H.
,
Ruslan
,
M. H.
,
Ibrahim
,
A.
, and
Kazem
,
H. A.
,
2014
, “
Performance Analysis of Photovoltaic Thermal (PVT) Water Collectors
,”
Energy Convers. Manage.
,
78
, pp.
641
651
.
11.
Joshi
,
A. S.
,
Tiwari
,
A.
,
Tiwari
,
G. N.
,
Dincer
,
I.
, and
Reddy
,
B. V.
, “
Performance Evaluation of a Hybrid Photovoltaic Thermal (PV/T) (Glass-to-Glass) System
,”
Int. J. Therm. Sci.
,
48
(
1
), pp.
154
164
.
12.
Ji
,
J.
,
Guo
,
C.
,
Sun
,
W.
, and
Li
,
G.
,
2014
, “
Experimental Investigation of tri-Functional Photovoltaic/Thermal Solar Collector
,”
Energy Convers. Manage.
,
88
, pp.
650
656
.
13.
Jarimi
,
H.
,
Abu Bakar
,
M. N.
,
Othman
,
M.
, and
Mahadzir
,
H. D.
,
2016
, “
Bi-Fluid Photovoltaic/Thermal (PV/T) Solar Collector: Experimental Validation of a 2-D Theoretical Model
,”
Renewable Energy
,
85
, pp.
1052
1067
.
14.
Agrawal
,
S.
, and
Tiwari
,
G. N.
,
2011
, “
Energy and Exergy Analysis of Hybrid Micro-Channel Photovoltaic Thermal Module
,”
Sol. Energy
,
85
(
2
), pp.
356
370
.
15.
Dubey
,
S.
,
Sandhu
,
G. S.
, and
Tiwari
,
G. N.
,
2009
, “
Analytical Expression for Electrical Efficiency of PV/T Hybrid Air Collector
,”
Appl. Energy
,
86
(
5
), pp.
697
705
.
16.
Makki
,
A.
,
Siddig
,
O.
, and
Sabir
,
H.
,
2015
, “
Advancements in Hybrid Photovoltaic Systems for Enhanced Solar Cells Performance
,”
Renewable Sustainable Energy Rev.
,
41
, pp.
658
684
.
17.
Zondag
,
H. A.
,
de Vries
,
D. W.
,
van Helden
,
W. G. J.
,
van Zolingen
,
R. J. C.
, and
van Steenhoven
,
A. A.
,
2002
, “
The Thermal and Electrical Yield of a PV-Thermal Collector
,”
Sol. Energy
,
72
(
2
), pp.
113
128
.
18.
Vokas
,
G.
,
Christandonis
,
N.
, and
Skittides
,
F.
,
2006
, “
Hybrid Photovoltaic-Thermal Systems for Domestic Heating and Cooling-A Theoretical Approach
,”
Sol. Energy
,
80
(
5
), pp.
607
615
.
19.
Colangelo
,
G.
,
Romano
,
D.
, and
Marco Tina
,
G.
,
2015
, “
Performance Evaluation of a New Type of Combined Photovoltaic-Thermal Solar Collector
,”
ASME J. Sol. Energy Eng.
,
137
(
4
), p.
041012
.
20.
Cristofari
,
C.
,
Notton
,
G.
, and
Canaletti
,
J. L.
,
2009
, “
Thermal Behavior of a Copolymer PV/T Solar System in Low Flow Rate Conditions
,”
Sol. Energy
,
83
(
8
), pp.
1123
1138
.
21.
Ghani
,
F.
,
Duke
,
M.
, and
Carson
,
J. K.
,
2012
, “
Estimation of Photovoltaic Conversion Efficiency of a Building Integrated Photovoltaic/Thermal (BIPV/T) Collector Array Using an Artificial Neural Network
,”
Sol. Energy
,
86
(
11
), pp.
3378
3387
.
22.
Rejeb
,
O.
,
Dhaou
,
H.
, and
Jemni
,
A.
,
2015
, “
A Numerical Investigation of a Photovoltaic Thermal (PV/T) Collector
,”
Renewable Energy
,
77
, pp.
43
50
.
23.
Touafek
,
K.
,
Khelifa
,
A.
, and
Adouane
,
M.
,
2014
, “
Theoretical and Experimental Study of Sheet and Tubes Hybrid PVT Collector
,”
Energy Convers. Manage.
,
80
, pp.
71
77
.
24.
Touafek
,
K.
,
Haddadi
,
M.
, and
Malek
,
A.
,
2009
, “
Experimental Study on a New Hybrid Photovoltaic Thermal Collector
,”
Appl. Sol. Energy
,
45
(
3
), pp.
181
186
.
25.
Ben Cheikh el Hocine
,
H.
,
Touafek
,
K.
,
Kerrour
,
F.
,
Haloui
,
H.
, and
Khelifa
,
A.
,
2015
, “
Model Validation of an Empirical Photovoltaic Thermal (PV/T) Collector
,”
International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability, TMREES15
,
Energy Procedia
,
74
, pp.
1090
1099
.
26.
Ben Cheikh el Hocine
,
H.
,
Touafek
,
K.
, and
Kerrour
,
F.
,
2014
, “
The Development of Empirical Photovoltaic/Thermal Collector
,”
The Second International Conference on Electrical Engineering and Control Applications ICEECA
, Constantine, Algeria, Nov. 18–20, p.
56
.
27.
Hottel
,
H. C.
, and
Willier
,
A.
,
1958
, “
Evaluation of Flat-Plate Solar Collector Performance
,”
Transactions of the Conference on the Use of Solar Energy
, Vol.
2
, University of Arizona Press, Tucson, Arizona, pp.
74
104
.
28.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
1991
,
Solar Engineering of Thermal Processes
,
2nd ed.
,
Wiley
,
New York
.
29.
Florschuetz
,
L. W.
,
1975
, “
Heat Rejection From Terrestrial Solar Cell Arrays With Sunlight Concentration
,”
IEEE Photovoltaic Specialists Conference Record Materials
, pp.
318
326
.
You do not currently have access to this content.