Falling particle receivers are being evaluated as an alternative to conventional fluid-based solar receivers to enable higher temperatures and higher efficiency power cycles with direct storage for concentrating solar power (CSP) applications. This paper presents studies of the particle mass flow rate, velocity, particle-curtain opacity and density, and other characteristics of free-falling ceramic particles as a function of different discharge slot apertures. The methods to characterize the particle flow are described, and results are compared to theoretical and numerical models for unheated conditions. Results showed that the particle velocities within the first 2 m of release closely match predictions of free-falling particles without drag due to the significant amount of air entrained within the particle curtain, which reduced drag. The measured particle-curtain thickness (∼2 cm) was greater than numerical simulations, likely due to additional convective air currents or particle–particle interactions neglected in the model. The measured and predicted particle volume fraction in the curtain decreased rapidly from a theoretical value of 60% at the release point to less than 10% within 0.5 m of drop distance. Measured particle-curtain opacities (0.5–1) using a new photographic method that can capture the entire particle curtain were shown to match well with discrete measurements from a conventional lux meter.

References

References
1.
Ho
,
C.
,
Christian
,
J.
,
Gill
,
D.
,
Moya
,
A.
,
Jeter
,
S.
,
Abdel-Khalik
,
S.
,
Sadowski
,
D.
,
Siegel
,
N.
,
Al-Ansary
,
H.
,
Amsbeck
,
L.
,
Gobereit
,
B.
, and
Buck
,
R.
,
2014
, “
Technology Advancements for Next Generation Falling Particle Receivers
,”
Energy Procedia
,
49
, pp.
398
407
.
2.
Bradshaw
,
R. W.
, and
Meeker
,
D. E.
,
1990
, “
High-Temperature Stability of Ternary Nitrate Molten-Salts for Solar Thermal-Energy Systems
,”
Sol. Energy Mater.
,
21
(
1
), pp.
51
60
.
3.
Siegel
,
N. P.
,
Ho
,
C. K.
,
Khalsa
,
S. S.
, and
Kolb
,
G. J.
,
2010
, “
Development and Evaluation of a Prototype Solid Particle Receiver: On-Sun Testing and Model Validation
,”
ASME J. Sol. Energy Eng.
,
132
(
2
), p.
021008
.
4.
Tan
,
T. D.
, and
Chen
,
Y. T.
,
2010
, “
Review of Study on Solid Particle Solar Receivers
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
265
276
.
5.
Wu
,
W.
,
Trebing
,
D.
,
Amsbeck
,
L.
,
Buck
,
R.
, and
Pitz-Paal
,
R.
,
2015
, “
Prototype Testing of a Centrifugal Particle Receiver for High-Temperature Concentrating Solar Applications
,”
ASME J. Sol. Energy Eng.
,
137
(
4
), p.
041011
.
6.
Wu
,
W.
,
Uhlig
,
R.
,
Buck
,
R.
, and
Pitz-Paal
,
R.
,
2015
, “
Numerical Simulation of a Centrifugal Particle Receiver for High-Temperature Concentrating Solar Applications
,”
Numer. Heat Transfer, Part A
,
68
(
2
), pp.
133
149
.
7.
Flamant
,
G.
,
Gauthier
,
D.
,
Benoit
,
H.
,
Sans
,
J. L.
,
Boissiere
,
B.
,
Ansart
,
R.
, and
Hemati
,
M.
,
2014
, “
A New Heat Transfer Fluid for Concentrating Solar Systems: Particle Flow in Tubes
,”
Energy Procedia
,
49
, pp.
617
626
.
8.
Flamant
,
G.
,
Gauthier
,
D.
,
Benoit
,
H.
,
Sans
,
J. L.
,
Garcia
,
R.
,
Boissiere
,
B.
,
Ansart
,
R.
, and
Hemati
,
M.
,
2013
, “
Dense Suspension of Solid Particles as a New Heat Transfer Fluid for Concentrated Solar Thermal Plants: On-Sun Proof of Concept
,”
Chem. Eng. Sci.
,
102
, pp.
567
576
.
9.
Ma
,
Z. W.
,
Glatzmaier
,
G.
, and
Mehos
,
M.
,
2014
, “
Fluidized Bed Technology for Concentrating Solar Power With Thermal Energy Storage
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
031014
.
10.
Gobereit
,
B.
,
Amsbeck
,
L.
, and
Buck
,
R.
,
2013
, “
Operation Strategies for Falling Particle Receivers
,”
ASME
Paper No. ES2015-49354.
11.
Christian
,
J. M.
, and
Ho
,
C. K.
,
2013
, “
Alternative Designs of a High Efficiency, North-Facing, Solid Particle Receiver
,”
Energia Procedia
,
49
, pp.
314
323
.
12.
Khalsa
,
S. S. S.
,
Christian
,
J. M.
,
Kolb
,
G. J.
,
Röger
,
M.
,
Amsbeck
,
L.
,
Ho
,
C. K.
,
Siegel
,
N. P.
, and
Moya
,
A. C.
,
2011
, “
CFD Simulation and Performance Analaysis of Alternative Designs for High-Temperature Solid Particle Receivers
,”
ASME
Paper No. ES2011-54430.
13.
Röger
,
M.
,
Amsbeck
,
L.
,
Gobereit
,
B.
, and
Buck
,
R.
,
2011
, “
Face-Down Solid Particle Receiver Using Recirculation
,”
ASME J. Sol. Energy Eng.
,
133
(
3
), p.
031009
.
14.
Ho
,
C. K.
,
Christian
,
J. M.
,
Moya
,
A. C.
,
Taylor
,
J.
,
Ray
,
D.
, and
Kelton
,
J.
,
2014
, “
Experimental and Numerical Studies of Air Curtains for Falling Particle Receivers
,”
ASME
Paper No. ES-FuelCell2014-6632.
15.
Siegel
,
N.
,
Kolb
,
G.
,
Kim
,
K.
,
Rangaswamy
,
V.
, and
Moujaes
,
S.
,
2007
, “
Solid Particle Receiver Flow Characterization Studies
,”
ASME
Paper No. ES2007-36118.
16.
Ho
,
C. K.
,
Khalsa
,
S. S.
, and
Siegel
,
N. P.
,
2009
, “
Modeling On-Sun Tests of a Prototype Solid Particle Receiver for Concentrating Solar Power Processes and Storage
,”
ASME
Paper No. ES2009-90035.
17.
Ho
,
C. K.
,
2016
, “
A Review of High-Temperature Particle Receivers for Concentrating Solar Power
,”
Appl. Therm. Eng.
,
109
, pp.
958
969
.
18.
Ho
,
C. K.
,
Christian
,
J. M.
,
Yellowhair
,
J.
,
Armijo
,
K.
, and
Jeter
,
S.
,
2016
, “
Performance Evaluation of a High-Temperature Falling Particle Receiver
,”
ASME
Paper No. ES2016-59238.
19.
Ho
,
C. K.
,
Christian
,
J. M.
,
Yellowhair
,
J.
,
Siegel
,
N.
,
Jeter
,
S.
,
Golob
,
M.
,
Abdel-Khalik
,
S. I.
,
Nguyen
,
C.
, and
Al-Ansary
,
H.
,
2015
, “
On Sun Testing of an Advanced Falling Particle Receiver System
,”
SolarPACES
, Cape Town, South Africa, Oct. 13–16, p. 030022.
20.
Hruby
,
J. M.
,
Steeper
,
R. R.
,
Evans
,
G. H.
, and
Crowe
,
C. T.
,
1986
, “
An Experimental and Numerical Study of Flow and Convective Heat Transfer in a Freely Falling Curtain of Particles
,” Sandia National Laboratories, Livermore, CA,
Report No. SAND86-8714
.
21.
Kim
,
K.
,
Moujaes
,
S. F.
, and
Kolb
,
G. J.
,
2010
, “
Experimental and Simulation Study on Wind Affecting Particle Flow in a Solar Receiver
,”
Sol. Energy
,
84
(
2
), pp.
263
270
.
22.
Tan
,
T. D.
,
Chen
,
Y. T.
,
Chen
,
Z. Q.
,
Siegel
,
N.
, and
Kolb
,
G. J.
,
2009
, “
Wind Effect on the Performance of Solid Particle Solar Receivers With and Without the Protection of an Aerowindow
,”
Sol. Energy
,
83
(
10
), pp.
1815
1827
.
23.
Ho
,
C. K.
, and
Christian
,
J. M.
,
2013
, “
Evaluation of Air Recirculation for Falling Particle Receivers
,”
ASME
Paper No. ES-FuelCell2013-18236.
24.
Kim
,
K.
,
Siegel
,
N.
,
Kolb
,
G.
,
Rangaswamy
,
V.
, and
Moujaes
,
S. F.
,
2009
, “
A Study of Solid Particle Flow Characterization in Solar Particle Receiver
,”
Sol. Energy
,
83
(
10
), pp.
1784
1793
.
25.
Siegel
,
N.
,
Gross
,
M.
,
Ho
,
C.
,
Phan
,
T.
, and
Yuan
,
J.
,
2014
, “
Physical Properties of Solid Particle Thermal Energy Storage Media for Concentrating Solar Power Applications
,”
Energy Procedia
,
49
, pp.
1015
1023
.
26.
Siegel
,
N. P.
,
Gross
,
M. D.
, and
Coury
,
R.
,
2015
, “
The Development of Direct Absorption and Storage Media for Falling Particle Solar Central Receivers
,”
ASME J. Sol. Energy Eng.
,
137
(
4
), p.
041003
.
27.
Knott
,
R.
,
Sadowski
,
D. L.
,
Jeter
,
S. M.
,
Abdel-Khalik
,
S. I.
,
Al-Ansary
,
H. A.
, and
El-Leathy
,
A.
,
2014
, “
High Temperature Durability of Solid Particles for Use in Particle Heating Concentrator Solar Power Systems
,”
ASME
Paper No. ES-FuelCell2014-6586.
28.
Knott
,
R.
,
Sadowski
,
D. L.
,
Jeter
,
S. M.
,
Abdel-Khalik
,
S. I.
,
Al-Ansary
,
H. A.
, and
El-Leathy
,
A.
,
2014
, “
Sintering of Solid Particulates Under Elevated Temperature and Pressure in Large Storage Bins for Thermal Energy Storage
,”
ASME
Paper No. ES-FuelCell2014-6588.
29.
Beverloo
,
W. A.
,
Leniger
,
H. A.
, and
Vandevelde
,
J.
,
1961
, “
The Flow of Granular Solids Through Orifices
,”
Chem. Eng. Sci.
,
15
(
3–4
), pp.
260
269
.
30.
Fowler
,
R. T.
, and
Glastonbury
,
J. R.
,
1959
, “
The Flow of Granular Solids Through Orifices
,”
Chem. Eng. Sci.
,
10
(
3
), pp.
150
156
.
31.
Janda
,
A.
,
Zuriguel
,
I.
, and
Maza
,
D.
,
2012
, “
Flow Rate of Particles Through Apertures Obtained From Self-Similar Density and Velocity Profiles (Vol 108, 248001, 2012)
,”
Phys. Rev. Lett.
,
109
(
18
), p.
189901
.
32.
Harmens
,
A.
,
1963
, “
Flow of Granular Material Through Horizontal Apertures
,”
Chem. Eng. Sci.
,
18
(
5
), pp.
297
306
.
33.
Morsi
,
S. A.
, and
Alexande
,
A. J.
,
1972
, “
Investigation of Particle Trajectories in 2-Phase Flow Systems
,”
J. Fluid Mech.
,
55
(
2
), pp.
193
208
.
34.
ANSYS,
2013
, “
ANSYS FLUENT Theory Guide Release 15.0
,” ANSYS, Canonsburg, PA.
You do not currently have access to this content.