Photovoltaic (PV) power forecasting has the potential to mitigate some of effects of resource variability caused by high solar power penetration into the electricity grid. Two main methods are currently used for PV power generation forecast: (i) a deterministic approach that uses physics-based models requiring detailed PV plant information and (ii) a data-driven approach based on statistical or stochastic machine learning techniques needing historical power measurements. The main goal of this work is to analyze the accuracy of these different approaches. Deterministic and stochastic models for day-ahead PV generation forecast were developed, and a detailed error analysis was performed. Four years of site measurements were used to train and test the models. Numerical weather prediction (NWP) data generated by the weather research and forecasting (WRF) model were used as input. Additionally, a new parameter, the clear sky performance index, is defined. This index is equivalent to the clear sky index for PV power generation forecast, and it is here used in conjunction to the stochastic and persistence models. The stochastic model not only was able to correct NWP bias errors but it also provided a better irradiance transposition on the PV plane. The deterministic and stochastic models yield day-ahead forecast skills with respect to persistence of 35% and 39%, respectively.

References

References
1.
IEA
,
2014
, “
2014 Snapshot of Global PV Markets
,” IEA PVPS, International Energy Agency, Paris, Technical Report No. IEA PVPS T1-26:2015.
2.
IEA
,
2014
, “
Technology Roadmap Solar Photovoltaic Energy: 2014 Edition
,”
IEA Renewable Energy Division
, Paris.
3.
Alet
,
P. J.
,
Baccaro
,
F.
,
De Felice
,
M.
,
Efthymiou
,
V.
,
Mayr
,
C.
,
Graditi
,
G.
,
Juel
,
M.
,
Moser
,
D.
,
Petitta
,
M.
,
Tselepis
,
S.
, and
Yang
,
G.
,
2015
, “
Photovoltaics Merging With the Active Integrated Grid: A White Paper of the European PV Technology Platform
,”
European PV Technology Platform
,
Brussels
,
Belgium
.
4.
Perez
,
R.
,
Lorenz
,
E.
,
Pelland
,
S.
,
Beauharnois
,
M.
,
Knowe
,
G. V.
,
Hemker
,
K.
,
Heinemann
,
D.
,
Remund
,
J.
,
Müller
,
S. C.
,
Traunmüller
,
W.
,
Steinmauer
,
G.
,
Pozo
,
D.
,
Ruiz-Arias
,
J. A.
,
Lara-Fanego
,
V.
,
Ramirez-Santigosa
,
L.
,
Gaston-Romero
,
M.
, and
Pomares
,
L. M.
,
2013
, “
Comparison of Numerical Weather Prediction Solar Irradiance Forecasts in the US, Canada and Europe
,”
Sol. Energy
,
94
, pp.
305
326
.
5.
Perez
,
R.
,
Moore
,
K.
,
Wilcox
,
S.
,
Renné
,
D.
, and
Zelenka
,
A.
,
2007
, “
Forecasting Solar Radiation—Preliminary Evaluation of an Approach Based Upon the National Forecast Database
,”
Sol. Energy
,
81
(
6
), pp.
809
812
.
6.
Lorenz
,
E.
,
Hurka
,
J.
,
Heinemann
,
D.
, and
Beyer
,
H. G.
,
2009
, “
Irradiance Forecasting for the Power Prediction of Grid-Connected Photovoltaic Systems
,”
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
,
2
(
1
), pp.
2
10
.
7.
Pierro
,
M.
,
Bucci
,
F.
,
Cornaro
,
C.
,
Maggioni
,
E.
,
Perotto
,
A.
,
Pravettoni
,
M.
, and
Spada
,
F.
,
2015
, “
Model Output Statistics Cascade to Improve Day Ahead Solar Irradiance Forecast
,”
Sol. Energy
,
117
, pp.
99
113
.
8.
Lorenz
,
E.
,
Hurka
,
J.
,
Karampela
,
G.
,
Heinemann
,
D.
,
Beyer
,
H. G.
, and
Schneider
,
M.
,
2008
, “
Qualified Forecast of Ensemble Power Production by Spatially Dispersed Grid-Connected PV Systems
,”
23rd European Photovoltaic Solar Energy Conference and Exhibition
, Valencia, Spain, Sept. 1–5, pp.
3285
3291
.
9.
Lorenz
,
E.
,
Scheidsteger
,
T.
,
Hurka
,
J.
,
Heinemann
,
D.
, and
Kurz
,
C.
,
2010
, “
Regional PV Power Prediction for Improved Grid Integration
,”
Prog. Photovoltaics: Res. Appl.
,
19
(
7
), pp.
757
771
.
10.
Pelland
,
S.
,
Galanis
,
G.
, and
Kallos
,
G.
,
2011
, “
Solar and Photovoltaic Forecasting Through Post-Processing of the Global Environmental Multiscale Numerical Weather Prediction Model
,”
Prog. Photovoltaics: Res. Appl.
,
21
(
3
), pp.
284
296
.
11.
Yona
,
A.
,
Senjyu
,
T.
,
Saber
,
A. Y.
,
Funabashi
,
T.
,
Sekine
,
H.
, and
Kim
,
C.-H.
,
2008
, “
Application of Neural Network to 24-Hour-Ahead Generating Power Forecasting for PV System
,”
IEEE
Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century
, Institute of Electrical and Electronics Engineers (IEEE).
12.
Chen
,
C.
,
Duan
,
S.
,
Cai
,
T.
, and
Liu
,
B.
,
2011
, “
Online 24-h Solar Power Forecasting Based on Weather Type Classification Using Artificial Neural Network
,”
Sol. Energy
,
85
(
11
), pp.
2856
2870
.
13.
Tao
,
C.
,
Shanxu
,
D.
, and
Changsong
,
C.
,
2010
, “
Forecasting Power Output for Grid-Connected Photovoltaic Power System Without Using Solar Radiation Measurement
,”
2nd International Symposium on Power Electronics for Distributed Generation Systems
, Institute of Electrical and Electronics Engineers (
IEEE
), June 16–18, pp.
773
777
.
14.
Wang
,
S.
,
Zhang
,
N.
,
Zhao
,
Y.
, and
Zhan
,
J.
,
2011
, “
Photovoltaic System Power Forecasting Based on Combined Grey Model and BP Neural Network
,”
International Conference on Electrical and Control Engineering
, Sept. 16–18, Institute of Electrical and Electronics Engineers (IEEE), pp.
4623
4626
.
15.
Mellit
,
A.
,
Pavan
,
A. M.
, and
Lughi
,
V.
,
2014
, “
Short-Term Forecasting of Power Production in a Large-Scale Photovoltaic Plant
,”
Sol. Energy
,
105
, pp.
401
413
.
16.
Larson
,
D. P.
,
Nonnenmacher
,
L.
, and
Coimbra
,
C. F. M.
,
2016
, “
Day-Ahead Forecasting of Solar Power Output From Photovoltaic Plants in the American Southwest
,”
Renewable Energy
,
91
, pp.
11
20
.
17.
Bacher
,
P.
,
Madsen
,
H.
, and
Nielsen
,
H. A.
,
2009
, “
Online Short-Term Solar Power Forecasting
,”
Sol. Energy
,
83
(
10
), pp.
1772
1783
.
18.
Mellit
,
A.
, and
Pavan
,
A. M.
,
2010
, “
A 24-h Forecast of Solar Irradiance Using Artificial Neural Network: Application for Performance Prediction of a Grid-Connected {PV} Plant at Trieste, Italy
,”
Sol. Energy
,
84
(
5
), pp.
807
821
.
19.
Li
,
Y.
,
Su
,
Y.
, and
Shu
,
L.
,
2014
, “
An ARMAX Model for Forecasting the Power Output of a Grid Connected Photovoltaic System
,”
Renewable Energy
,
66
, pp.
78
89
.
20.
Zamo
,
M.
,
Mestre
,
O.
,
Arbogast
,
P.
, and
Pannekoucke
,
O.
,
2014
, “
A Benchmark of Statistical Regression Methods for Short-Term Forecasting of Photovoltaic Electricity Production, Part I: Deterministic Forecast of Hourly Production
,”
Sol. Energy
,
105
, pp.
792
803
.
21.
da Silva Fonseca
,
J. G.
, Jr.
,
Oozeki
,
T.
,
Ohtake
,
H.
,
Shimose
,
K.-i.
,
Takashima
,
T.
, and
Ogimoto
,
K.
,
2014
, “
Regional Forecasts and Smoothing Effect of Photovoltaic Power Generation in Japan: An Approach With Principal Component Analysis
,”
Renewable Energy
,
68
, pp.
403
413
.
22.
da Silva Fonseca
,
J. G.
, Jr.
,
Oozeki
,
T.
,
Ohtake
,
H.
,
Takashima
,
T.
, and
Ogimoto
,
K.
,
2015
, “
Regional Forecasts of Photovoltaic Power Generation According to Different Data Availability Scenarios: A Study of Four Methods
,”
Prog. Photovoltaics: Res. Appl.
,
23
(
10
), pp.
1203
1218
.
23.
Zamo
,
M.
,
Mestre
,
O.
,
Arbogast
,
P.
, and
Pannekoucke
,
O.
,
2014
, “
A Benchmark of Statistical Regression Methods for Short-Term Forecasting of Photovoltaic Electricity Production, Part II: Probabilistic Forecast of Daily Production
,”
Sol. Energy
,
105
, pp.
804
816
.
24.
Almeida
,
M. P.
,
Perpiñán
,
O.
, and
Narvarte
,
L.
,
2015
, “
PV Power Forecast Using a Nonparametric PV Model
,”
Sol. Energy
,
115
, pp.
354
368
.
25.
Davò
,
F.
,
Alessandrini
,
S. S.
,
Sperati
,
S.
,
Monache
,
L. D.
,
Airoldi
,
D.
, and
Vespucci
,
M. T.
,
2016
, “
Post-Processing Techniques and Principal Component Analysis for Regional Wind Power and Solar Irradiance Forecasting
,”
Sol. Energy
,
134
, pp.
327
338
.
26.
Sperati
,
S.
,
Alessandrini
,
S.
, and
Delle Monache
,
L.
,
2016
, “
An Application of the ECMWF Ensemble Prediction System for Short-Term Solar Power Forecasting
,”
Sol. Energy
,
133
, pp.
437
450
.
27.
Paulescu
,
M.
,
Paulescu
,
E.
,
Gravila
,
P.
, and
Badescu
,
V.
,
2012
,
Weather Modeling and Forecasting of PV Systems Operation
,
Springer Science+Business Media
,
Berlin
.
28.
Kleissl
,
J.
,
2013
,
Solar Energy Forecasting and Resource Assessment
,
Academic Press
,
Cambridge, MA
.
29.
IEA
,
2013
, “
Photovoltaic and Solar Forecasting: State of the Art
,” IEA PVPS, International Energy Agency, Paris, Technical Report No. IEA-PVPS T14-01: 2013.
30.
Belluardo
,
G.
,
Ingenhoven
,
P.
,
Sparber
,
W.
,
Wagner
,
J.
,
Weihs
,
P.
, and
Moser
,
D.
,
2015
, “
Novel Method for the Improvement in the Evaluation of Outdoor Performance Loss Rate in Different PV Technologies and Comparison With Two Other Methods
,”
Sol. Energy
,
117
, pp.
139
152
.
31.
Bertani
,
D.
,
Guastella
,
S.
,
Belluardo
,
G.
, and
Moser
,
D.
,
2015
, “
Long Term Measurement Accuracy Analysis of a Commercial Monitoring System for Photovoltaic Plants
,”
IEEE Workshop on Environmental, Energy and Structural Monitoring Systems
(
EESMS
), July 9–10, pp.
84
89
.
32.
Skamarock
,
W.
,
Klemp
,
J.
,
Dudhia
,
J.
,
Gill
,
D.
,
Barker
,
D.
,
Duda
,
M. G.
,
Huang
,
X.-Y.
,
Wang
,
W.
, and
Powers
,
J. G.
,
2008
, “
A Description of the Advanced Research WRF Version 3
,” NCAR, Boulder, CO, Technical Note NCAR/TN-4751STR.
33.
Rogers
,
E.
,
Black
,
T.
,
Ferrier
,
B.
,
Lin
,
Y.
,
Parrish
,
D.
, and
DiMego
,
G.
,
2001
, “
Changes to the NCEP Meso Eta Analysis and Forecast System: Increase in Resolution, New Cloud Microphysics, Modified Precipitation Assimilation, Modified 3DVAR Analysis
,” Office of Metrology,
National Weather Service
, Silver Spring, MD.
34.
Paulson
,
C. A.
,
1970
, “
The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer
,”
J. Appl. Meteorol.
,
9
(
6
), pp.
857
861
.
35.
Tewari
,
M.
,
Chen
,
F.
,
Wang
,
W.
,
Dudhia
,
J.
,
LeMone
,
M.
,
Mitchell
,
K.
,
Ek
,
M.
,
Gayno
,
G.
,
Wegiel
,
J.
, and
Cuenca
,
R.
,
2004
, “
Implementation and Verification of the Unified NOAH Land Surface Model in the WRF Model
,”
20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction
, pp.
11
15
.
36.
Hong
,
S.-Y.
,
Noh
,
Y.
, and
Dudhia
,
J.
,
2006
, “
A New Vertical Diffusion Package With an Explicit Treatment of Entrainment Processes
,”
Mon. Weather Rev.
,
134
(
9
), pp.
2318
2341
.
37.
Kain
,
J. S.
,
2004
, “
The Kain–Fritsch Convective Parameterization: An Update
,”
J. Appl. Meteorol.
,
43
(
1
), pp.
170
181
.
38.
Beyer
,
H. G.
,
Polo Martinez
,
J.
,
Suri
,
M.
,
Torres
,
J. L.
,
Lorenz
,
E.
,
Müller
,
S. C.
,
Hoyer-Klick
,
C.
, and
Ineichen
,
P.
,
2009
, “
Report on Benchmarking of Radiation Products
,”
Management and Exploitation of Solar Resource Knowledge (MESOR)
,
Sixth Framework Programme
, Contract No. 038665.
39.
Houghton
,
J.
,
2002
,
The Physics of Atmospheres
,
Cambridge University Press
,
Cambridge, UK
.
40.
Liu
,
B.
, and
Jordan
,
R.
,
1961
, “
Daily Insolation on Surfaces Tilted Towards Equator
,”
ASHRAE J.
,
10
, p.
5047843
.
41.
King
,
D. L.
,
Kratochvil
,
J. A.
, and
Boyson
,
W. E.
,
2004
, “
Photovoltaic Array Performance Model
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2004-3535.
42.
Pierro
,
M.
,
Bucci
,
F.
, and
Cornaro
,
C.
,
2014
, “
Full Characterization of Photovoltaic Modules in Real Operating Conditions: Theoretical Model Measurement Method and Results
,”
Prog. Photovoltaics: Res. Appl.
,
23
(
4
), pp.
443
461
.
43.
Basheer
,
I.
, and
Hajmeer
,
M.
,
2000
, “
Artificial Neural Networks: Fundamentals, Computing, Design, and Application
,”
J. Microbiol. Methods
,
43
(
1
), pp.
3
31
.
44.
Zhang
,
G.
,
Patuwo
,
B. E.
, and
Hu
,
M. Y.
,
1998
, “
Forecasting With Artificial Neural Networks: The State of the Art
,”
Int. J. Forecasting
,
14
(
1
), pp.
35
62
.
45.
Mellit
,
A.
,
2008
, “
Artificial Intelligence Technique for Modelling and Forecasting of Solar Radiation Data: A Review
,”
Int. J. Artif. Intell. Soft Comput.
,
1
(
1
), pp.
52
76
.
46.
Cornaro
,
C.
,
Pierro
,
M.
, and
Bucci
,
F.
,
2015
, “
Master Optimization Process Based on Neural Networks Ensemble for 24-h Solar Irradiance Forecast
,”
Sol. Energy
,
111
, pp.
297
312
.
47.
Marquez
,
R.
, and
Coimbra
,
C. F.
,
2013
, “
Proposed Metric for Evaluation of Solar Forecasting Models
,”
ASME J. Sol. Energy Eng.
,
135
, p.
0110161
.
48.
Lorenz
,
E.
,
Remund
,
J.
,
Müller
,
S. C.
,
Traunmüller
,
W.
,
Steinmaurer
,
G.
,
Pozo
,
D.
,
Ruiz-Arias
,
J. A.
,
Fanego
, V
. L.
,
Ramirez
,
L.
,
Romeo
,
M. G.
, and
Kurz
,
C.
,
2009
, “
Benchmarking of Different Approaches to Forecast Solar Irradiance
,”
24th European Photovoltaic Solar Energy Conference
, Hamburg, Germany, Vol.
21
, p.
25
.
49.
Klucher
,
T. M.
,
1979
, “
Evaluation of Models to Predict Insolation on Tilted Surfaces
,”
Sol. Energy
,
23
(
2
), pp.
111
114
.
50.
Gueymard
,
C. A.
,
2008
, “
From Global Horizontal to Global Tilted Irradiance: How Accurate are Solar Energy Engineering Predictions in Practice?
,”
SOLAR 2008
, San Diego, CA, American Solar Energy Society, pp.
1434
1456
.
51.
Pierro
,
M.
,
Bucci
,
F.
, and
Cornaro
,
C.
,
2015
, “
Impact of Light Soaking and Thermal Annealing on Amorphous Silicon Thin Film Performance
,”
Prog. Photovoltaics: Res. Appl.
,
23
(
11
), pp.
1581
1596
.
52.
Huang
,
Y.
,
Lu
,
J.
,
Liu
,
C.
,
Xu
,
X.
,
Wang
,
W.
, and
Zhou
,
X.
,
2010
, “
Comparative Study of Power Forecasting Methods for PV Stations
,”
International Conference on Power System Technology
, Oct. 24–28, Institute of Electrical and Electronics Engineers (IEEE).
53.
Lorenz
,
E.
,
2015
, “
PV Production Forecast of Balance Zones in Germany
,”
IEA PVPS and SHC Workshop at
EUPVSEC 2013
: Solar Resource and Forecast Data for High PV Penetration, EA PVPS Task 14 and SHC Task 46, Paris.
54.
Gulin
,
M.
,
Vašak
,
M.
, and
Baotic
,
M.
,
2013
, “
Estimation of the Global Solar Irradiance on Tilted Surfaces
,”
17th International Conference on Electrical Drives and Power Electronics
(
EDPE 2013
), pp.
334
339
.
55.
Mlawer
,
E. J.
,
Taubman
,
S. J.
,
Brown
,
P. D.
,
Iacono
,
M. J.
, and
Clough
,
S. A.
,
1997
, “
Radiative Transfer for Inhomogeneous Atmospheres: RRTM, a Validated Correlated-k Model for the Longwave
,”
J. Geophys. Res.: Atmos.
,
102
, pp.
16663
16682
.
56.
Fu
,
Q.
, and
Liou
,
K.
,
1992
, “
On the Correlated k-Distribution Method for Radiative Transfer in Nonhomogeneous Atmospheres
,”
J. Atmos. Sci.
,
49
(
22
), pp.
2139
2156
.
57.
Oreopoulos
,
L.
, and
Barker
,
H. W.
,
1999
, “
Accounting for Subgrid-Scale Cloud Variability in a Multi-Layer 1D Solar Radiative Transfer Algorithm
,”
Q. J. R. Meteorol. Soc.
,
125
(
553
), pp.
301
330
.
58.
Grell
,
G. A.
,
Peckham
,
S. E.
,
Schmitz
,
R.
,
McKeen
,
S. A.
,
Frost
,
G.
,
Skamarock
,
W. C.
, and
Eder
,
B.
,
2005
, “
Fully Coupled ‘Online’ Chemistry Within the WRF Model
,”
Atmos. Environ.
,
39
(
37
), pp.
6957
6975
.
You do not currently have access to this content.