The working principle of particle-based solar receivers is to utilize the absorptivity of a dispersed particle phase in an otherwise optically transparent carrier fluid. In comparison to their traditional counterparts, which use a solid surface for radiation absorption, particle-based receivers offer a number of opportunities for improved efficiency and heat transfer uniformity. The physical phenomena at the core of such receivers involve coupling between particle transport, fluid turbulence, and radiative heat transfer. Previous analyses of particle-based solar receivers ignored delicate aspects associated with this three-way coupling. Namely, these investigations considered the flow fields only in the mean sense and ignored turbulent fluctuations and the consequent particle preferential concentration. In the present work, we have performed three-dimensional direct numerical simulations of turbulent flows coupled with radiative heating and particle transport over a range of particle Stokes numbers. Our study demonstrates that the particle preferential concentration has strong implications on the heat transfer statistics. We demonstrate that “for a typical setting” the preferential concentration of particles reduces the effective heat transfer between particles and the gas by as much as 25%. Therefore, we conclude that a regime with Stokes number of order unity is the least preferred for heat transfer to the carrier fluid. We also provide a 1D model to capture the effect of particle spatial distribution in heat transfer.

References

References
1.
Smil
,
V.
,
2013
,
Energy: A Beginner's Guide
,
Oneworld Publications
, Oxford, UK.
2.
Mancini
,
T. R.
,
Kolb
,
G. J.
, and
Prairie
,
M. R.
,
1997
, “
Solar Thermal Power
,”
Adv. Sol. Energy
,
11
, pp.
1
42
.
3.
Kogan
,
M.
, and
Kogan
,
A.
,
2003
, “
Production of Hydrogen and Carbon by Solar Thermal Methane Splitting. I. The Unseeded Reactor
,”
Int. J. Hydrogen Energy
,
28
(
11
), pp.
1187
1198
.
4.
Romero
,
M.
,
Buck
,
R.
, and
Pacheco
,
J. E.
,
2002
, “
An Update on Solar Central Receiver Systems, Projects, and Technologies
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
98
108
.
5.
Abdelrahman
,
M.
,
Fumeaux
,
P.
, and
Suter
,
P.
,
1979
, “
Study of Solid-Gas-Suspensions Used for Direct Absorption of Concentrated Solar Radiation
,”
Sol. Energy
,
22
(
1
), pp.
45
48
.
6.
Ho
,
C. K.
, and
Iverson
,
B. D.
,
2014
, “
Review of High-Temperature Central Receiver Designs for Concentrating Solar Power
,”
Renewable Sustainable Energy Rev.
,
29
, pp.
835
846
.
7.
Minardi
,
J. E.
, and
Chuang
,
H. N.
,
1975
, “
Performance of a Black Liquid Flat-Plate Solar Collector
,”
Sol. Energy
,
17
(
3
), pp.
179
183
.
8.
Hunt
,
A. J.
,
1979
, “
A New Solar Thermal Receiver Utilizing a Small Particle Heat Exchanger
,”
14th Intersociety Energy Conversion Engineering Conference
, Vol.
1
, pp.
159
163
.
9.
Bertocchi
,
R.
,
Karni
,
J.
, and
Kribus
,
A.
,
2004
, “
Experimental Evaluation of a Non-Isothermal High Temperature Solar Particle Receiver
,”
Energy
,
29
(
5
), pp.
687
700
.
10.
Klein
,
H. H.
,
Rubin
,
R.
, and
Karni
,
J.
,
2008
, “
Experimental Evaluation of Particle Consumption in a Particle Seeded Solar Receiver
,”
ASME J. Sol. Energy Eng.
,
130
(
1
), p.
011012
.
11.
Kim
,
K.
,
Siegel
,
N.
,
Kolb
,
G.
,
Rangaswamy
,
V.
, and
Moujaes
,
S. F.
,
2009
, “
A Study of Solid Particle Flow Characterization in Solar Particle Receiver
,”
Sol. Energy
,
83
(
10
), pp.
1784
1793
.
12.
Siegel
,
N. P.
,
Ho
,
C. K.
,
Khalsa
,
S. S.
, and
Kolb
,
G. J.
,
2010
, “
Development and Evaluation of a Prototype Solid Particle Receiver: On-Sun Testing and Model Validation
,”
ASME J. Sol. Energy Eng.
,
132
(
2
), p.
021008
.
13.
Heller
,
P.
,
Pfänder
,
M.
,
Denk
,
T.
,
Tellez
,
F.
,
Valverde
,
A.
,
Fernandez
,
J.
, and
Ring
,
A.
,
2006
, “
Test and Evaluation of a Solar Powered Gas Turbine System
,”
Sol. Energy
,
80
(
10
), pp.
1225
1230
.
14.
Miller
,
F. J.
, and
Hunt
,
A. J.
,
2012
, “
Developing the Small Particle Heat Exchange Receiver for a Prototype Test
,”
ASME
Paper No. ES2012-91337.
15.
Maag
,
G.
,
Rodat
,
S.
,
Flamant
,
G.
, and
Steinfeld
,
A.
,
2010
, “
Heat Transfer Model and Scale-Up of an Entrained-Flow Solar Reactor for the Thermal Decomposition of Methane
,”
Int. J. Hydrogen Energy
,
35
(
24
), pp.
13232
13241
.
16.
Miller
,
F.
, and
Koenigsdorff
,
R.
,
1991
, “
Theoretical Analysis of a High-Temperature Small-Particle Solar Receiver
,”
Sol. Energy Mater.
,
24
(
1
), pp.
210
221
.
17.
Miller
,
F. J.
, and
Koenigsdorff
,
R. W.
,
2000
, “
Thermal Modeling of a Small-Particle Solar Central Receiver
,”
ASME J. Sol. Energy Eng.
,
122
(
1
), pp.
23
29
.
18.
Chu
,
C.-M.
, and
Churchill
,
S. W.
,
1955
, “
Numerical Solution of Problems in Multiple Scattering of Electromagnetic Radiation
,”
J. Phys. Chem.
,
59
(
9
), pp.
855
863
.
19.
Ruther
,
S. J.
,
2010
, “
Radiation Heat Transfer Simulation of a Small Particle Solar Receiver Using the Monte Carlo Method
,”
Master's thesis
, San Diego State University, San Diego, CA.
20.
Crocker
,
A.
, and
Miller
,
F.
,
2011
, “
Coupled Fluid Flow and Radiative Modeling for a Small Particle Solar Receiver
,”
AIAA
Paper No. 2011-5902.
21.
Chen
,
H.
,
Chen
,
Y.
,
Hsieh
,
H.-T.
, and
Siegel
,
N.
,
2007
, “
Computational Fluid Dynamics Modeling of Gas-Particle Flow Within a Solid-Particle Solar Receiver
,”
ASME J. Sol. Energy Eng.
,
129
(
2
), pp.
160
170
.
22.
Yuen
,
W. W.
,
Miller
,
F. J.
, and
Hunt
,
A. J.
,
1986
, “
Heat Transfer Characteristics of a Gas-Particle Mixture Under Direct Radiant Heating
,”
Int. Commun. Heat Mass Transfer
,
13
(
2
), pp.
145
154
.
23.
Klein
,
H. H.
,
Karni
,
J.
,
Ben-Zvi
,
R.
, and
Bertocchi
,
R.
,
2007
, “
Heat Transfer in a Directly Irradiated Solar Receiver/Reactor for Solid–Gas Reactions
,”
Sol. Energy
,
81
(
10
), pp.
1227
1239
.
24.
Eaton
,
J. K.
, and
Fessler
,
J. R.
,
1994
, “
Preferential Concentration of Particles by Turbulence
,”
Int. J. Multiphase Flow
,
20
(Suppl. 1), pp.
169
209
.
25.
Squires
,
K. D.
, and
Eaton
,
J. K.
,
1991
, “
Preferential Concentration of Particles by Turbulence
,”
Phys. Fluids A
,
3
(
5
), pp.
1169
1178
.
26.
Chen
,
X.-Q.
,
2000
, “
Heavy Particle Dispersion in Inhomogeneous, Anisotropic, Turbulent Flows
,”
Int. J. Multiphase Flow
,
26
(
4
), pp.
635
661
.
27.
Rouson
,
D. W. I.
, and
Eaton
,
J. K.
,
2001
, “
On the Preferential Concentration of Solid Particles in Turbulent Channel Flow
,”
J. Fluid Mech.
,
428
, pp.
149
169
.
28.
Fessler
,
J. R.
,
Kulick
,
J. D.
, and
Eaton
,
J. K.
,
1994
, “
Preferential Concentration of Heavy Particles in a Turbulent Channel Flow
,”
Phys. Fluids (1994-Present)
,
6
(
11
), pp.
3742
3749
.
29.
Kulick
,
J. D.
,
Fessler
,
J. R.
, and
Eaton
,
J. K.
,
1994
, “
Particle Response and Turbulence Modification in Fully Developed Channel Flow
,”
J. Fluid Mech.
,
277
, pp.
109
134
.
30.
Wood
,
A. M.
,
Hwang
,
W.
, and
Eaton
,
J. K.
,
2005
, “
Preferential Concentration of Particles in Homogeneous and Isotropic Turbulence
,”
Int. J. Multiphase Flow
,
31
(
10
), pp.
1220
1230
.
31.
Tanaka
,
T.
, and
Eaton
,
J. K.
,
2010
, “
Sub-Kolmogorov Resolution Particle Image Velocimetry Measurements of Particle-Laden Forced Turbulence
,”
J. Fluid Mech.
,
643
, pp.
177
206
.
32.
Birzer
,
C. H.
,
Kalt
,
P. A. M.
, and
Nathan
,
G. J.
,
2012
, “
The Influences of Particle Mass Loading on Mean and Instantaneous Particle Distributions in Precessing Jet Flows
,”
Int. J. Multiphase Flow
,
41
, pp.
13
22
.
33.
Zamansky
,
R.
,
Coletti
,
F.
,
Massot
,
M.
, and
Mani
,
A.
,
2014
, “
Radiation Induces Turbulence in Particle-Laden Fluids
,”
Phys. Fluids (1994-Present)
,
26
(
7
), p.
071701
.
34.
Frankel
,
A.
,
Pouransari
,
H.
,
Coletti
,
F.
, and
Mani
,
A.
,
2016
, “
Settling of Heated Particles in Homogeneous Turbulence
,”
J. Fluid Mech.
,
792
, pp.
869
893
.
35.
Bertocchi
,
R.
,
2002
, “
Carbon Particle Cloud Generation for a Solar Particle Receiver
,”
ASME J. Sol. Energy Eng.
,
124
(
3
), pp.
230
236
.
36.
Miller
,
F. J.
,
1988
, “
Radiative Heat Transfer in a Flowing Gas-Particle Mixture
,”
Ph.D. thesis
, California University, Berkeley, CA.
37.
Reeks
,
M. W.
,
1983
, “
The Transport of Discrete Particles in Inhomogeneous Turbulence
,”
J. Aerosol Sci.
,
14
(
6
), pp.
729
739
.
38.
Crowe
,
C. T.
,
Troutt
,
T. R.
, and
Chung
,
J. N.
,
1996
, “
Numerical Models for Two-Phase Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
28
(
1
), pp.
11
43
.
39.
Horwitz
,
J. A. K.
, and
Mani
,
A.
,
2016
, “
Accurate Calculation of Stokes Drag for Point–Particle Tracking in Two-Way Coupled Flows
,”
J. Comput. Phys.
,
318
, pp.
85
109
.
40.
Vié
,
A.
,
Pouransari
,
H.
,
Zamansky
,
R.
, and
Mani
,
A.
,
2016
, “
Particle-Laden Flows Forced by the Disperse Phase: Comparison Between Lagrangian and Eulerian Simulations
,”
Int. J. Multiphase Flow
,
79
, pp.
144
158
.
41.
Maxey
,
M. R.
, and
Riley
,
J. J.
,
1983
, “
Equation of Motion for a Small Rigid Sphere in a Nonuniform Flow
,”
Phys. Fluids (1958–1988)
,
26
(
4
), pp.
883
889
.
42.
Pouransari
,
H.
,
Mortazavi
,
M.
, and
Mani
,
A.
,
2015
, “
Parallel Variable-Density Particle-Laden Turbulence Simulation
,” Annual Research Briefs,
Center for Turbulence Research
, Standford, CA, pp.
43
54
.
43.
Rosales
,
C.
, and
Meneveau
,
C.
,
2005
, “
Linear Forcing in Numerical Simulations of Isotropic Turbulence: Physical Space Implementations and Convergence Properties
,”
Phys. Fluids (1994-Present)
,
17
(
9
), p.
095106
.
44.
Eswaran
,
V.
, and
Pope
,
S. B.
,
1988
, “
An Examination of Forcing in Direct Numerical Simulations of Turbulence
,”
Comput. Fluids
,
16
(
3
), pp.
257
278
.
45.
Frankel
,
A.
,
Iaccarino
,
G.
, and
Mani
,
A.
,
2016
, “
Convergence of the Bouguer–Beer Law for Radiation Extinction in Particulate Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
182
, pp.
45
54
.
46.
Sundaram
,
S.
, and
Collins
,
L. R.
,
1997
, “
Collision Statistics in an Isotropic Particle-Laden Turbulent Suspension. Part 1. Direct Numerical Simulations
,”
J. Fluid Mech.
,
335
, pp.
75
109
.
47.
Monchaux
,
R.
,
Bourgoin
,
M.
, and
Cartellier
,
A.
,
2010
, “
Preferential Concentration of Heavy Particles: A Voronoï Analysis
,”
Phys. Fluids (1994-Present)
,
22
(
10
), p.
103304
.
48.
Tagawa
,
Y.
,
Mercado
,
J. M.
,
Prakash
,
V. N.
,
Calzavarini
,
E.
,
Sun
,
C.
, and
Lohse
,
D.
,
2012
, “
Three-Dimensional Lagrangian Voronoi Analysis for Clustering of Particles and Bubbles in Turbulence
,”
J. Fluid Mech.
,
693
, pp.
201
215
.
49.
Esmaily-Moghadam
,
M.
, and
Mani
,
A.
,
2015
, “
An Analytical Description of Clustering of Inertial Particles in Turbulent Flows
,” e-print arXiv:1510.00776.
You do not currently have access to this content.