The dynamic performance of a thermal energy storage tank containing phase change material (PCM) cylinders is investigated computationally. Water flowing along the length of the cylinders is used as the heat transfer fluid. A numerical model based on the enthalpy-porosity method is developed and validated against experimental data from the literature. The performance of this hybrid PCM/water system was assessed based on the gain in energy storage capacity compared to a sensible only system. Gains can reach as high as 179% by using 50% packing ratio and 10 °C operating temperature range in water tanks. Gains are highly affected by the choice of PCM module diameter; they are almost halved as diameter increases four times. They are also affected by the mass flow rate nonlinearly. A nondimensional analysis of the energy storage capacity gains as a function of the key nondimensional parameters (Stefan, Fourier, and Reynolds numbers) as well as PCM melting temperature was performed. The simulations covered ranges of 0.1 <  Stẽ  < 0.4, 0 < Fo < 600, 20 < Re < 4000, 0.2<(ρCP)*<0.8, and 0.2<θm<0.8.

References

References
1.
NRCan
,
2012
, “
Energy Use Data Handbook—1990 to 2009
,” Office of Energy Efficiency, Natural Resources Canada, Ottawa, ON, Canada, Technical Report No. M141-11/2009E, accessed Sept. 8, 2014, http://oee.nrcan.gc.ca/Publications/statistics/handbook11/
2.
Zalba
,
B.
,
Marin
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
,
2003
, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
251
283
.
3.
Abhat
,
A.
,
1983
, “
Low Temperature Latent Heat Thermal Energy Storage: Heat Storage Materials
,”
Solar Energy
,
30
(
4
), pp.
313
332
.
4.
Sharma
,
A.
,
Tyagi
,
V. V.
,
Chen
,
C. R.
, and
Buddhi
,
D.
,
2009
, “
Review on Thermal Energy Storage With Phase Change Materials and Applications
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
318
345
.
5.
Zhang
,
Z. G.
, and
Fang
,
X. M.
,
2006
, “
Study on Paraffin/Expanded Graphite Composite Phase Change Thermal Energy Storage Material
,”
Energy Convers. Manage.
,
47
(
3
), pp.
303
310
.
6.
Kousksou
,
T.
,
Jamil
,
A.
,
Eirhafiki
,
T.
, and
Zeraouli
,
Y.
,
2010
, “
Paraffin Wax Mixtures as Phase Change Materials
,”
Sol. Energy Mater. Sol. Cells
,
94
(
12
), pp.
2158
2165
.
7.
Lane
,
G. A.
,
1983
, “
Solar Heat Storage: Latent Heat Materials
,” Vol. I, CRC Press, Boca Raton, FL.
8.
Feldman
,
D.
,
Banu
,
D.
, and
Hawes
,
D.
,
1995
, “
Low Chain Esters of Stearic Acid as Phase Change Materials for Thermal Energy Storage in Buildings
,”
Sol. Energy Mater. Sol. Cells
,
36
(
3
), pp.
311
322
.
9.
Feldman
,
D.
,
Banu
,
D.
, and
Hawes
,
D.
,
1995
, “
Development and Application of Organic Phase Change Mixtures in Thermal Storage Gypsum Wallboard
,”
Sol. Energy Mater. Sol. Cells
,
36
(
2
), pp.
147
157
.
10.
Alkan
,
C.
, and
Sari
,
A.
,
2008
, “
Fatty Acid/Poly (Methyl Methacrylate) (PMMA) Blends as Form-Stable Phase Change Materials for Latent Heat Thermal Energy Storage
,”
Sol. Energy
,
82
(
2
), pp.
118
124
.
11.
Baetens
,
R.
,
Jelle
,
B.
, and
Gustavsen
,
A.
,
2010
, “
Phase Change Materials for Building Applications: A State-of-the-Art Review
,”
Energy Build.
,
42
(
9
), pp.
1361
1368
.
12.
Desgrosseillier
,
L.
,
Murray
,
R.
,
Safatli
,
A.
,
Marin
,
G.
,
Stewart
,
J.
,
Osbourne
,
N.
,
White
,
M. A.
,
Groulx
,
D.
,
2011
, “
Phase Change Material Selection in the Design of a Latent Heat Energy Storage System Coupled With a Domestic Hot Water Solar Thermal System
,”
ASHRAE
Annual Conference, Montreal, Canada
, June 25–29, pp.
183
190
.
13.
Sari
,
A.
, and
Kaygusuz
,
K.
,
2002
, “
Thermal and Heat Transfer Characteristics in a Latent Heat Storage System Using Lauric Acid
,”
Energy Convers. Manage.
,
43
(
18
), pp.
2493
2507
.
14.
Sari
,
A.
, and
Kaygusuz
,
K.
,
2003
, “
Some Fatty Acids Used for Latent Heat Storage: Thermal Stability and Corrosion of Metals With Respect to Thermal Cycling
,”
Renewable Energy
,
28
(
6
), pp.
939
948
.
15.
Sari
,
A.
, and
Karaipekli
,
A.
,
2009
, “
Preparation, Thermal Properties and Thermal Reliability of Palmitic Acid/Expanded Graphite Composite as Form-Stable PCM for Thermal Energy Storage
,”
Sol. Energy Mater. Sol. Cells
,
93
(
5
), pp.
571
576
.
16.
Nakhla
,
D.
,
Sadek
,
H.
, and
Cotton
,
J. S.
,
2015
,“
Melting Performance Enhancement in Latent Heat Storage Module Using Solid Extraction Electrohydrodynamics (EHD)
,”
Int. J. Heat Mass Transfer
,
81
, pp.
695
704
.
17.
Bergles
,
A. E.
,
2011
, “
Recent Developments in Enhanced Heat Transfer
,”
Int. J. Heat Mass Transfer
,
47
(
8
), pp.
1001
1008
.
18.
Jegadheeswaran
,
S.
, and
Pohekar
,
S. D.
,
2009
, “
Performance Enhancement in Latent Heat Thermal Storage System: A Review
,”
Renewable Sustainable Energy Rev.
,
13
(
9
), pp.
2225
2244
.
19.
Agyenim
,
F.
,
Hewitt
,
N.
,
Eames
,
P.
, and
Smyth
,
M.
,
2010
, “
A Review of Materials, Heat Transfer and Phase Change Problem Formulation for Latent Heat Thermal Energy Storage Systems (LHTESS)
,”
Renewable Sustainable Energy Rev.
,
14
(
2
), pp.
615
628
.
20.
Sanusi
,
O.
,
Warzoha
,
R.
, and
Fleischer
,
A. S.
,
2011
, “
Energy Storage and Solidification of Paraffin Phase Change Material Embedded With Graphite Nano-Fibers
,”
Int. J. Heat Mass Transfer
,
54
(
19
), pp.
4429
4436
.
21.
Pokhrel
,
R.
,
Gonzalez
,
J. E.
,
Hight
,
T.
, and
Adalsteinsonn
,
T.
,
2010
, “
Analysis and Design of a Paraffin/Graphite Composite PCM Integrated in a Thermal Storage Unit
,”
ASME J. Sol. Energy Eng.
,
132
(
4
), p.
041006
.
22.
Velraj
,
R.
,
Seeniraj
,
R. V.
,
Hafner
,
B.
,
Faber
,
C.
, and
Schwarzer
,
K.
,
1999
, “
Heat Transfer Enhancement in a Latent Heat Storage System
,”
Sol. Energy
,
65
(
3
), pp.
171
180
.
23.
Stritih
,
U.
,
2004
, “
An Experimental Study of Enhanced Heat Transfer in Rectangular PCM Thermal Storage
,”
Int. J. Heat Mass Transfer
,
47
(
12
), pp.
2841
2847
.
24.
Yingqiu
,
Z.
,
Yinping
,
Z.
,
Yi
,
J.
, and
Yanbing
,
K.
,
1999
, “
Thermal Storage and Heat Transfer in Phase Change Material Outside a Circular Tube With Axial Variation of the Heat Transfer Fluid Temperature
,”
ASME J. Sol. Energy Eng.
,
121
(
3
), pp.
145
149
.
25.
Lacroix
,
M.
, and
Benmadda
,
M.
,
1997
, “
Numerical Simulation of Natural Convection-Dominated Melting and Solidification From a Finned Vertical Wall
,”
Numer. Heat Transfer Part A: Appl.
,
31
(
1
), pp.
71
86
.
26.
Nallusamy
,
N.
,
Sampath
,
S.
, and
Velraj
,
R.
,
2007
, “
Experimental Investigation on a Combined Sensible and Latent Heat Storage System Integrated With Constant/Varying (Solar) Heat Sources
,”
Renewable Energy
,
32
(
7
), pp.
1206
1227
.
27.
Michels
,
H.
, and
Pitz-Paal
,
R.
,
2007
, “
Cascaded Latent Heat Storage for Parabolic Trough Solar Power Plants
,”
Sol. Energy
,
81
(
6
), pp.
829
837
.
28.
Seeniraj
,
R. V.
, and
Narasimhan
,
N. L.
,
2008
, “
Performance Enhancement of a Solar Dynamic LHTS Module Having Both Fins and Multiple PCMs
,”
Sol. Energy
,
82
(
6
), pp.
535
542
.
29.
Dutil
,
Y.
,
Rousse
,
D. R.
,
Salah
,
N. B.
,
Lassue
,
S.
, and
Zalewski
,
L.
,
2011
,“
A Review on Phase-Change Materials: Mathematical Modeling and Simulations
,”
Renewable Sustainable Energy Rev.
,
15
(
1
), pp.
112
130
.
30.
Morgan
,
K.
,
1981
, “
A Numerical Analysis of Freezing and Melting With Convection
,”
Comput. Methods Appl. Eng.
,
28
(
3
), pp.
275
284
.
31.
Voller
,
V. R.
,
Markatos
,
N. C.
, and
Cross
,
M.
,
1985
, “
Techniques for Accounting for the Moving Interface in Convection/Diffusion Phase Change
,” eds. R. W. Lewis and K. Morgan, Vol. 1, Pineridge Press, pp.
595
609
.
32.
Voller
,
V. R.
,
Markatos
,
N. C.
, and
Cross
,
M.
,
1986
, “
Solidification in Convection and Diffusion
,”
Numer. Simul. Fluid Flow Heat/Mass Transfer Process.
,
18
, pp.
425
432
.
33.
Voller
,
V. R.
,
Cross
,
M.
, and
Markatos
,
N. C.
,
1987
, “
An Enthalpy Method for Convection/Diffusion Phase Changes
,”
Int. J. Numer. Methods Eng.
,
24
(
1
), pp.
271
284
.
34.
Bonacina
,
C.
,
Cornini
,
G.
,
Fasano
,
A.
, and
Primicero
,
M.
,
1973
, “
Numerical Solution of Phase-Change Problems
,”
Int. J. Heat Mass Transfer
,
16
(
10
), pp.
1825
1832
.
35.
Cornini
,
G.
,
Guidiq
,
S. D.
,
Lewis
,
R. W.
, and
Zienkiewiq
,
O. C.
,
1974
, “
Finite Element Solution of Non-linear Heat Conduction Problems With Reference to Phase Change
,”
Int. J. Numer. Methods Eng.
,
8
(
3
), pp.
613
624
.
36.
Morgan
,
K.
,
Lewis
,
R. W.
, and
Zienkiewicq
,
O. C.
,
1978
, “
An Improved Algorithm for Heat Conduction Problems With Phase Change
,”
Int. J. Numer. Methods Eng.
,
12
(
7
), pp.
1191
1195
.
37.
Lemmon
,
E. C.
,
1981
, “
Multidimensional Integral Phase Change Approximations for Finite Element Conduction Codes
,”
Numerical Methods in Heat Transfer
,
Wiley
,
Chichester, UK
, pp.
201
213
.
38.
Pham
,
Q. T.
,
1986
, “
The Use of Lumped Capacitance in the Finite-Element Solution of Heat Conduction Problems With Phase Change
,”
Int. J. Heat Mass Transfer
,
29
(
2
), pp.
285
291
.
39.
Jones
,
B. J.
,
Sun
,
D.
,
Krishnan
,
S.
, and
Garimella
,
S. V.
,
2006
, “
Experimental and Numerical Study of Melting in a Cylinder
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2724
2738
.
40.
Dhaidan
,
S. N.
, and
Khodadadi
,
J. M.
,
2015
, “
Melting and Convection of Phase Change Materials in Different Shape Containers: A Review
,”
Renewable Sustainable Energy Rev.
,
43
, pp.
449
477
.
41.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Ganic
,
E. N.
,
1985
,
Handbook of Heat Transfer Fundamentals
,
2nd ed
,
McGraw-Hill
,
New York
.
42.
Esen
,
M.
, and
Ayhan
,
T.
,
1996
, “
Development of a Model Compatible With Solar Assisted Cylindrical Energy Storage Tank and Variation of Stored Energy With Time for Different Phase Change Materials
,”
Energy Conver. Manage.
,
37
(
12
), pp.
1775
1785
.
43.
Castell
,
A.
,
Sole
,
C.
,
Medrano
,
M.
,
Nogues
,
N.
, and
Cabeza
,
L. F.
,
2009
, “
Comparison of Stratification in a Water Tank and a PCM-Water Tank
,”
ASME J. Sol. Energy Eng.
,
131
(
2
), p.
024501
.
44.
Hollands
,
K. G. T.
, and
Lightstone
,
M. F.
,
1989
, “
A Review of Low-Flow, Stratified-Tank Solar Water Heating Systems
,”
Sol. Energy
,
43
(
2
), pp.
97
105
.
45.
Furbo
,
S.
,
Vejen
,
N.
, and
Shah
,
L.
,
2005
, “
Thermal Performance of a Large Low Flow Solar Heating System With a Highly Thermally Stratified Tank
,”
ASME J. Sol. Energy Eng.
,
127
(
1
), pp.
15
20
.
46.
Shmidt
,
M.
, and
Lipson
,
H.
,
2013
, “
Eureqa[software]
,” Nutonian, Boston, MA, accessed May 9, 2015, http://www.nutonian.com/products/eureqa/
You do not currently have access to this content.