Energy addiction is regarded as the primary obstacle to humanity's sustainable future. The need to change lifestyles in consumer societies to become more sustainable is advocated without a clear understanding of what elements of modern life must undergo major transformations. One of the most overlooked aspects of this question is the role of buildings that serve as homes and workspaces. The energy use for maintaining such infrastructure, especially in urban areas, and operating key services like heating or cooling, lighting, delivering water, and collecting wastewater will inevitably grow as global population becomes increasing more affluent. This paper investigates the energy costs of several aspects of these key services in urban areas, specifically delivering and heating water and heating residential spaces in the five boroughs of New York City. It provides detailed geospatial calculations as an example of assessing energy costs based on physical principles (e.g., accounting for the effects of topography and building floor elevation to deliver water and heat, and energy losses in the water distribution system). The paper also serves as a demonstration of much-needed research to price out the cost of modern life in energy terms in order to identify major inefficiencies in our current urban infrastructure, as well as the potential for efficiency improvements. While these calculations do not directly incorporate observed data, the principles demonstrated here highlight the use of quantitative geospatial analyses (based on fundamental physics) in order to look at urban infrastructures, particularly for planning and designing new cities or rebuild existing ones.

References

1.
Rockström
,
J.
,
Steffen
,
W.
,
Noone
,
K.
,
Persson
,
A.
,
Chapin
,
F. S.
,
Lambin
,
E. F.
,
Lenton
,
T. M.
,
Scheffer
,
M.
,
Folke
,
C.
, and
Schellnhuber
,
H. J.
,
2009
, “
A Safe Operating Space for Humanity
,”
Nature
,
461
(
7263
), pp.
472
475
.
2.
Rockström
,
J.
,
Steffen
,
W.
,
Noone
,
K.
,
Persson
,
A.
,
Chapin
,
F. S. I.
,
Lambin
,
E. F.
,
Lenton
,
T. M.
,
Scheffer
,
M.
,
Folke
,
C.
,
Schellnhuber
,
H. J.
,
Nykvist
,
B.
,
Wit
,
C. A. D.
,
Hughes
,
T.
,
Leeuw
,
S. V. D.
,
Rodhe
,
H.
,
Sörlin
,
S.
,
Snyder
,
P. K.
,
Costanza
,
R.
,
Svedin
,
U.
,
Falkenmark
,
M.
,
Karlberg
,
L.
,
Corell
,
R. W.
,
Fabry
,
V. J.
,
Hansen
,
J.
,
Walker
,
B.
,
Liverman
,
D.
,
Richardson
,
K.
,
Crutzen
,
P. J.
, and
Foley
,
J. A.
,
2009
, “
Planetary Boundaries: Exploring the Safe Operating Space for Humanity
,”
Ecol. Soc.
,
14
(
2
), p.
32
.
3.
Nordhaus
,
T.
,
Shellenberger
,
M.
, and
Blomqvist
,
L.
,
2012
, “
The Planetary Boundaries Hypothesis: A Review of the Evidence
,”
Breakthrough Institute
, Oakland, CA.
4.
Bogardi
,
J. J.
,
Fekete
,
B. M.
, and
Vörösmarty
,
C. J.
,
2013
, “
Planetary Boundaries Revisited: A View Through the ‘Water Lens'
,”
Curr. Opin. Environ. Sustainability
,
5
(
6
), pp.
581
589
.
5.
Running
,
S. W.
,
2012
, “
Ecology—A Measurable Planetary Boundary for the Biosphere
,”
Science
,
337
(
6101
), pp.
1458
1459
.
6.
Foley
,
J. A.
,
Ramankutty
,
N.
,
Brauman
,
K. A.
,
Cassidy
,
E. S.
,
Gerber
,
J. S.
,
Johnston
,
M.
,
Mueller
,
N. D.
,
O'Connell
,
C.
,
Ray
,
D. K.
,
West
,
P. C.
,
Balzer
,
C.
,
Bennett
,
E. M.
,
Carpenter
,
S. R.
,
Hill
,
J.
,
Monfreda
,
C.
,
Polasky
,
S.
,
Rockström
,
J.
,
Sheehan
,
J.
,
Siebert
,
S.
,
Tilman
,
D.
, and
Zaks
,
D. P. M.
,
2011
, “
Solutions for a Cultivated Planet
,”
Nature
,
478
(
7369
), pp.
337
342
.
7.
Rijsberman
,
F. R.
,
2006
, “
Water Scarcity: Fact of Fiction?
,”
Agric. Water Manage.
,
80
(
1–3
), pp.
5
22
.
8.
McDonald
,
R. I.
,
Douglas
,
I.
,
Revenga
,
C.
,
Hale
,
R.
,
Grimm
,
N.
,
Grönwall
,
J.
, and
Fekete
,
B.
,
2011
, “
Global Urban Growth and the Geography of Water Availability, Quality, and Delivery
,”
Ambio
,
40
(
5
), pp.
437
446
.
9.
Seto
,
K. C.
,
Güneralp
,
B.
,
Hutyra
,
L. R.
, and
Guneralp
,
B.
,
2012
, “
Global Forecasts of Urban Expansion to 2030 and Direct Impacts on Biodiversity and Carbon Pools
,”
Proc. Natl. Acad. Sci. U.S.A.
,
109
(
40
), pp.
1
6
.
10.
Gandy
,
M.
,
2003
,
Concrete and Clay: Reworking Nature in New York City
,
MIT Press
,
Cambridge, MA
.
11.
Derrick
,
P.
,
2001
,
Tunneling to the Future: The Story of the Great Subway Expansion That Saved New York
,
NYU Press
, New York.
12.
Pacala
,
S. W.
, and
Socolow
,
R. H.
,
2004
, “
Stabilization Wedges: Solving the Climate Problem for the Next 50 Years With Current Technologies
,”
Science
,
305
(
5686
), pp.
968
972
.
13.
Jacobson
,
M. Z.
, and
Delucchi
,
M. A.
,
2011
, “
Providing All Global Energy With Wind, Water, and Solar Power, Part I: Technologies, Energy Resources, Quantities and Areas of Infrastructure, and Materials
,”
Energy Policy
,
39
(
3
), pp.
1154
1169
.
14.
Pielke
,
R. A.
, Jr.
,
2010
,
The Climate Fix: What Scientists and Politicians Won't Tell You About Global Warming
,
Basic Books
,
New York
.
15.
Prins
,
G.
,
Galiana
,
I.
,
Green
,
C.
,
Grundmann
,
R.
,
Korhola
,
A.
,
Laird
,
F.
,
Nordhaus
,
T.
,
Jnr
,
P.
,
Rayner
,
S.
, and
Sarewitz
,
D.
,
2010
, “
The Hartwell Paper: A New Direction for Climate Policy After the Crash of 2009
,” Institute for Science, Innovation and Society, University of Oxford, LSE Mackinder Programme,
London School of Economics and Political Science
, London.
16.
Howard
,
B.
,
Parshall
,
L.
,
Thompson
,
J.
,
Hammer
,
S.
,
Dickinson
,
J.
, and
Modi
,
V.
,
2012
, “
Spatial Distribution of Urban Building Energy Consumption by End Use
,”
Energy Build.
,
45
, pp.
141
151
.
17.
Brownsword
,
R. A.
,
Fleming
,
P. D.
,
Powell
,
J. C.
, and
Pearsall
,
N.
,
2005
, “
Sustainable Cities—Modelling Urban Energy Supply and Demand
,”
Appl. Energy
,
82
(
2
), pp.
167
180
.
18.
Fekete
,
B. M.
, and
Bogárdi
,
J. J.
,
2015
, “
Role of Engineering in Sustainable Water Management
,”
Earth Perspect.
,
2
(
2
), pp.
1
9
.
19.
IEA
,
2010
, “
Energy Poverty: How to Make Modern Energy Access Universal?
,”
International Energy Agency
, Paris.
You do not currently have access to this content.