An urbanized version of MM5 (uMM5) was used at a 500 m horizontal grid-resolution to study effects on morning urban mixing depths and near roof-top stability from use of extensive green roofs in Mexico City, which is characterized by large Bowen ratios and high building storages. The model uses urban-morphology data, while building hydrothermal uMM5 input parameters were obtained from measurements over green and nearby conventional roofs. Evaluation of uMM5 predicted values against rooftop and planetary boundary layer (PBL) observations from extensive field measurement campaigns showed that the model performed reasonably well. Additional simulations were carried assuming that the roofs in entire urban neighborhoods were greened. Predicted mixing depths from these simulations, along with observed air pollution concentrations, were then used in a simple box model to evaluate potential green roof impacts on concentration. Results showed that green roofs produced an early morning (7–10 LST) cooling of up to 1.2 °C at rooftop levels, which reduced mixing depths during that period. Effects were greater on a day with weak synoptic forcing that on one 48 h later with strong synoptic forcing. The mixing-depth decreases produced increased box-model pollutant concentrations. While the green roofs did not elevate the observed concentrations of CO, SO2, and NO2 above World Health Organization (WHO) health standards, they did increase PM10, values (which were already above its standard) by as much as 8% from 7 to 9 LST, when local populations are normally exposed to peak concentrations. This study has applications in the analyses of building energy efficiency.

References

References
1.
DeNardo
,
J. C.
,
Jarrett
,
A. R.
,
Manbeck
,
H. B.
,
Beattie
,
D. J.
, and
Berghage
,
R. D.
,
2005
, “
Stormwater Mitigation and Surface Temperature Reduction by Green Roofs
,”
Trans. ASAE
,
48
(
4
), pp.
1491
1496
.
2.
Gartland
,
L.
,
2008
,
Heat Islands: Understanding and Mitigating Heat in Urban Areas
,
Earthscan
,
London
.
3.
Castleton
,
H. F.
,
Stovin
,
V.
,
Beck
,
S. B. M.
, and
Davison
,
J. B.
,
2010
, “
Green Roofs; Building Energy Savings and the Potential for Retrofit
,”
Energy Build.
,
42
(
10
), pp.
1582
1591
.
4.
Sailor
,
D. J.
,
Elley
,
T. B.
, and
Gibson
,
M.
,
2012
, “
Exploring the Building Energy Impacts of Green Roof Design Decisions—A Modeling Study of Buildings in Four Distinct Climate
,”
J. Build. Phys.
,
35
(
4
), pp.
372
391
.
5.
Gutierrez
,
E.
,
González
,
J. E.
,
Arend
,
M.
,
Bornstein
,
R.
, and
Martilli
,
A.
,
2015
, “
On the Anthropogenic Heat Fluxes Using an Air Conditioning Evaporative Cooling Parameterization for Mesoscale Urban Canopy Models
,”
ASME. J. Sol. Energy Eng.
,
137
(
5
), p.
051005
.
6.
Redon
,
E.
,
Lemonsu
,
A.
,
Musy
,
M.
,
Masson
,
V.
,
Munck
,
C. D.
, and
Chancibault
,
K.
,
2015
, “
Modeling of Urban Vegetation as a Thermal Regulator and Management of Associated Water Resources for Neighbourhood to City-scale Applications
,”
9th International Conference on Urban Climate With 12th Symposium on the Urban Environmental
, p. 3.
7.
Taha
,
H.
,
2013
, “
Meteorological, Emissions and Air-Quality Modeling of Heat-Island Mitigation: Recent Findings for California, USA
,”
Int. J. Low-Carbon Technol.
,
10
(
1
), pp.
3
14
.
8.
Dupont
,
S.
,
Otte
,
T. L.
, and
Ching
,
J. K.
,
2004
, “
Simulation of Meteorological Fields Within and Above Urban and Rural Canopies With a Mesoscale Model
,”
Boundary-Layer Meteorol.
,
113
(
1
), pp.
111
158
.
9.
Martilli
,
A.
,
Clappier
,
A.
, and
Rotach
,
M. W.
,
2002
, “
An Urban Surface Exchange Parameterization for Mesoscale Models
,”
Boundary-Layer Meteorol.
,
104
(
2
), pp.
261
304
.
10.
Hitchcock
,
D.
,
2005
, “
Evaluating Meteorological Impacts of Urban Forest and Albedo Changes in the Houston—Galveston Region: A Fine Resolution (UCP) Meso-Urban Modeling Study of the August-September 2000 Episode
,” Report C, Houston Advanced Research Center.
11.
Taha
,
H.
,
2008
, “
Meso-Urban Meteorological and Photochemical Modeling of Heat Island Mitigation
,”
Atmos. Environ.
,
42
(
38
), pp.
8795
8809
.
12.
Taha
,
H.
,
2008
, “
Episodic Performance and Sensitivity of the Urbanized MM5 (uMM5) to Perturbations in Surface Properties in Houston TX
,”
Boundary Layer Meteorol.
,
127
(
2
), pp.
193
218
.
13.
Taha
,
H.
,
2008
, “
Urban Surface Modification as a Potential Ozone Air-Quality Improvement Strategy in California: A Mesoscale Modeling Study. Boundary-Layer Meteorology
,”
Boundary Layer Meteorol.
,
127
(
2
), pp.
219
339
.
14.
Malakooti
,
H.
,
Musson-Genon
,
L.
, and
Sportisse
,
B.
,
2009
, “
Numerical Simulations of Boundary Layer Structure During the High Pollution Episode in Tehran Region
,”
EGU
General Assembly Conference
,
Vienna
,
Austria
, Apr. 19–24, Vol.
11
, p.
7885
.
15.
Bass
,
B.
,
Krayenhoff
,
S.
,
Martilli
,
A.
, and
Stull
,
R.
,
2002
, “
Mitigating the Urban Heat Island With Green Roof Infrastructure
,”
Urban Heat Island Summit
,
Toronto
,
Canada
.
16.
Claverie
,
R.
,
Bouyer
,
J.
,
Sabre
,
M.
,
Schwager
,
J.
,
Mucig
,
C.
,
Ramier
,
D.
,
Berthier
,
E.
,
Sellami
,
E.
,
Versini
,
P.-A.
, and
de Gouvello
,
B.
,
2015
, “
The TERRACES Project-A Collaborative Work to Understand the Role of Vegetative Green Roof in Refreshing the Urban Ambiances
,”
9th International Conference on Urban Climate With 12th Symposium on the Urban Environmental
, p.
27
.
17.
Oke
,
T. R.
,
Spronken-Smith
,
R. A.
,
Jáuregui
,
E.
, and
Grimmond
,
C. S.
,
1999
, “
The Energy Balance of Central Mexico City During the Dry Season
,”
Atmos. Environ.
,
33
(
24
), pp.
3919
3930
.
18.
Matsumoto
,
Y.
,
Valdés
,
M.
,
Urbano
,
J. A.
,
Kobayashi
,
T.
,
López
,
G.
, and
Peña
,
R.
,
2014
, “
Global Solar Irradiation in North Mexico City and Some Comparisons With the South
,”
Energy Procedia
,
57
, pp.
1179
1188
.
19.
Molina
,
L. T.
,
Madronich
,
S.
,
Gaffney
,
J. S.
,
Apel
,
E.
,
Foy
,
B. D.
,
Fast
,
J.
, and
Zavala
,
M.
,
2010
, “
An Overview of the MILAGRO 2006 Campaign: Mexico City Emissions and Their Transport and Transformation
,”
Atmos. Chem. Phys.
,
10
(
18
), pp.
8697
8760
.
20.
Velasco
,
E.
,
2006
, “
Measurements at the SIMAT Site
,”
Molina Center for Energy and the Enviroment(MCE2)
, personal communication.
21.
Doran
,
J. C.
,
Abbott
,
S.
,
Archuleta
,
J.
,
Bian
,
S.
,
Chow
,
J. C.
,
Coulter
,
R. L.
,
de Wekker
,
S. F.
,
Edgerton
,
S. A.
,
Elliot
,
S.
,
Fernandez
,
A.
,
Fast
,
J. D.
,
Hubbe
,
J. M.
,
King
,
C.
,
Langley
,
D.
,
Leach
,
J.
,
Lee
,
J. T.
,
Martin
,
T. J.
,
Martinez
,
S.
,
Martinez
,
D.
,
Martinez
,
J. L.
,
Mercado
,
G.
,
Mora
,
V.
,
Mulhearn
,
M.
,
Pena
,
J. L.
,
Petty
,
R.
,
Porch
,
W.
,
Russel
,
C.
,
Salas
,
R.
,
Shannon
,
J. D.
,
Shaw
,
W. J.
,
Sosa
,
G.
,
Tellier
,
L.
,
Templeman
,
B.
,
Watson
,
J. G.
,
White
,
R.
,
Whiteman
,
C. D.
, and
Wolfe
,
D.
,
1998
, “
The IMADA-AVER Boundary Layer Experiment in the Mexico City Area
,”
Bull. Am. Meteorol. Soc.
,
79
(
11
), pp.
2497
2508
.
22.
Dudhia
,
J.
,
Gill
,
D.
,
Yong
,
R. G.
, and
Manning
,
K.
,
2005
, “
PSU/NCAR Mesoscale Modeling System Tutorial Class Notes and User's Guide: MM5 Modeling System Version 3
,”
NCAR
, Boulder, CO.
23.
Burian
,
S. J.
,
Brown
,
M. J.
, and
Augustus
,
N.
,
2007
, “
Development and Assessment of the Second Generation National Building Statistics Database
,”
Seventh Symposium on the Urban Environment
, pp.
10
13
.
24.
Ching
,
J.
,
Brown
,
M.
,
McPherson
,
T.
,
Burian
,
S.
,
Chen
,
F.
,
Cionco
,
R.
, and
Williams
,
D.
,
2009
, “
National Urban Database and Access Portal Tool
,”
Bull. Am. Meteorol. Soc.
,
90
(
8
), pp.
1157
1168
.
25.
Oke
,
T. R.
,
1987
,
Boundary Layer Climates
,
2nd ed.
, Vol.
452
,
Routledge
,
London
.
26.
National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce
,
2000
, “
NCEP FNL Operational Model Global Tropospheric Analyses, Continuing From July 1999
,” Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, CO, accessed Nov. 19, 2009, http://rda.ucar.edu/datasets/ds083.2
27.
Shaw
,
W. J.
,
Pekour
,
M. S.
,
Coulter
,
R. L.
,
Martin
,
T. J.
, and
Walters
,
J. T.
,
2007
, “
The Daytime Mixing Layer Observed by Radiosonde, Profiler, and Lidar During MILAGRO
,”
Atmos. Chem. Phys. Discuss.
,
7
(
5
), pp.
15025
15065
.
28.
De Haij
,
M.
,
Wauben
,
W.
, and
Baltink
,
H. K.
,
2006
, “
Determination of Mixing Layer Height From Ceilometer Backscatter Profiles
,”
Proc. SPIE
,
6362
, p.
63620R
.
29.
Seinfeld
,
J. H.
, and
Spyros
,
N. P.
,
1998
,
Atmospheric Chemistry and Physics: From Air Pollution to Climate Change
,
Wiley
,
New York
, pp.
1197
1200
.
30.
Sportisse
,
B.
,
2001
, “
Box Models Versus Eulerian Models in Air Pollution Modeling
,”
Atmos. Environ.
,
35
(
1
), pp.
173
178
.
31.
Willmott
,
C. J.
,
1981
, “
On the Validation of Models
,”
Phys. Geogr.
,
2
(
2
), pp.
184
194
.
32.
SMA-GDF
.,
2006
, “
Informe Climatológico Ambiental del Valle de México 2006
,” SMA-GDF, México D.F., accessed Feb. 10, 2009 http://www.sma.df.gob.mx
33.
Bornstein
,
R. D.
,
1968
, “
Observations of the Urban Heat Island Effect in New York City
,”
J. Appl. Meteorol.
,
7
(
4
), pp.
575
582
.
You do not currently have access to this content.