A major advantage of concentrating solar power (CSP) plants is their ability to store thermal energy at a cost far lower than that of current battery technologies. A recent techno-economic study found that packed rock bed thermal storage systems can be constructed with capital costs of less than 10 United States dollar (USD)/kWht, significantly cheaper than the two-tank molten salt thermal storage currently used in CSP plants (about 22–30 USD/kWht). However, little work has been published on determining optimum rock bed design parameters in the context of a CSP plant. The parametric study in this paper is intended to provide an overview of the bed flow lengths, particle sizes, mass fluxes, and Biot numbers which are expected to minimize the levelized cost of electricity (LCOE) for a central receiver CSP plant with a nominal storage capacity of 12 h. The findings show that rock diameters of 20–25 mm will usually give LCOE values at or very close to the minimum LCOE for the combined rock bed and CSP plant. Biot numbers between 0.1 and 0.2 are shown to have little influence on the position of the optimum (with respect to particle diameter) for all practical purposes. Optimum bed lengths are dependent on the Biot number and range between 3 and 10 m for a particle diameter of 20 mm.

References

References
1.
IEA
,
2014
, “
Solar (PV and CSP)
,” International Energy Agency, Paris, accessed June 3, 2015, http://www.iea.org/topics/solarpvandcsp/
2.
Kost
,
K.
,
Mayer
,
J. N.
,
Thomsen
,
J.
,
Hartmann
,
N.
,
Senkpiel
,
C.
,
Philipps
,
S.
,
Nold
,
S.
,
Lude
,
S.
,
Saad
,
N.
, and
Schlegl
,
T.
,
2013
,
Levelized Cost of Electricity: Renewable Energy Technologies
,
Fraunhofer Institute for Solar Energy Systems ISE
,
Freiburg, Germany
.
3.
Doty
,
G. N.
,
McCree
,
D. L.
, and
Doty
,
F. D.
,
2010
, “
Projections of Levelized Cost Benefit of Grid-Scale Energy Storage Options
,”
ASME
Paper No. ES2010-90377.
4.
Vorrath
,
S.
,
2015
, “
Energy Storage Could Reach Big Breakthrough Within 5 Years
,” CleanTechnica, accessed Dec. 4,
2015
, http://cleantechnica.com/2015/03/04/energy-storage-could-reach-cost-holy-grail-within-5-years/
5.
Carnegie
,
R.
,
Gotham
,
D.
,
Nderitu
,
D.
, and
Preckel
,
P. V.
,
2013
, “
Utility Scale Energy Storage Systems: Benefits, Applications, and Technologies
,” State Utility Forecasting Group, West Lafayette, IN.
6.
Airlight Energy
,
2015
, “
ALACAES: Advanced Adiabatic Compressed Air Energy Storage
,” Airlight Energy, Biasca, Switzerland, accessed June 3,
2015
, http://www.airlightenergy.com/advanced-adiabatic-compressed-air-energy-storage/
7.
PSE
,
2015
, “
IRP Draft
,” Puget Sound Energy, Bellevue, WA, accessed Nov. 10, 2015, https://pse.com/aboutpse/EnergySupply/Documents/DRAFT_IRP_2015_AppL.pdf
8.
Trabish
,
H. K.
,
2015
, “
Primer: The Now and Future Impacts of Energy Storage
,” Utility Dive, Washington, DC, accessed Oct. 21, 2015, http://www.utilitydive.com/news/primer-the-now-and-future-impacts-of-energy-storage/407099/
9.
Sniderman
,
D.
,
2012
, “
Salt Heat Transfer Fluids in CSP
,” ASME, New York, accessed Jan. 11, 2016, https://www.asme.org/engineering-topics/articles/heat-transfer/salt-heat-transfer-fluids-in-csp
10.
Kolb
,
G. J.
,
Ho
,
C. K.
,
Mancini
,
T. R.
, and
Gary
,
J. A.
,
2011
, “
SANDIA Report: Power Tower Technology Roadmap and Cost Reduction Plan
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2011-2419.
11.
Hardy
,
M. P.
,
Albertson
, V
. D.
,
Bligh
,
T. P.
,
Riaz
,
M.
, and
Blackshear
,
P. L.
,
1977
, “
Large-Scale Thermal Storage in Rock: Construction, Utilization, and Economics
,”
12th Intersociety Energy Conversion Engineering Conference
(
IECEC
), Vol.
1
. pp.
583
590
.
12.
InflationData
,
2015
, “
Inflation Rate Calculator
,” InflationData, accessed July 1,
2015
, http://inflationdata.com/Inflation/Inflation_Calculators/Inflation_Rate_Calculator.asp
13.
Curto
,
P. A.
, and
Stern
,
G.
,
1980
, “
Thermal Storage Using Slag
,”
3rd Miami International Conference on Alternative Energy Sources
, Miami Beach, FL, Dec. 15, Vol.
1
, pp.
195
208
.
14.
Von Backström
,
T. W.
,
Allen
,
K. G.
, and
Joubert
,
E. C.
,
2015
, “
Rock Bed Thermal Storage: Report 5, Concept Techno-Economics
,” University of Stellenbosch, Maitland, South Africa.
15.
UWP
,
2015
, “
Rock Bed Thermal Storage Pilot Project: Containment Structure—Civil Engineer's Report
,” Stellenbosch, South Africa, Report No. 4.
16.
Hughes
,
P. J.
,
1975
, “
The Design and Predicted Performance of Arlington House
,” M.Sc. thesis, University of Wisconsin–Madison, Madison, WI.
17.
Allen
,
K. G.
,
Von Backström
,
T. W.
, and
Kröger
,
D. G.
,
2015
, “
Rock Bed Pressure Drop and Heat Transfer: Simple Design Correlations
,”
Sol. Energy
,
115
, pp.
525
536
.
18.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Introduction to Heat Transfer
,
5th ed.
,
Wiley
,
Hoboken, NJ
.
19.
Waples
,
D. W.
, and
Waples
,
J. S.
,
2004
, “
A Review and Evaluation of Specific Heat Capacities of Rocks, Minerals, and Subsurface Fluids. Part 1: Minerals and Nonporous Rocks
,”
Nat. Resour. Res.
,
13
(
2
), pp.
97
122
.
20.
Allen
,
K. G.
,
Von Backström
,
T. W.
, and
Kröger
,
D. G.
,
2014
, “
Packed Rock Bed Thermal Storage in Power Plants: Design Considerations
,”
Energy Procedia
,
49
, pp.
666
675
.
21.
Allen
,
K. G.
,
2014
, “
Rock Bed Thermal Storage for Concentrating Solar Power Plants
,”
Ph.D. dissertation
, University of Stellenbosch, Maitland, South Africa.
22.
Çengel
,
Y. A.
,
2003
,
Heat Transfer: A Practical Approach
,
2nd ed.
,
McGraw-Hill
,
New York
.
23.
Wakao
,
N.
,
Kaguei
,
S.
, and
Funazkri
,
T.
,
1979
, “
Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients in Packed Beds: Correlation of Nusselt Numbers
,”
Chem. Eng. Sci.
,
34
(
3
), pp.
325
336
.
24.
Jones
,
M. Q. W.
,
2003
, “
Thermal Properties of Stratified Rocks From Witwatersrand Gold Mining Areas
,”
J. S. Afr. Inst. Min. Metall.
,
101
, pp.
173
185
.
25.
Allen
,
K. G.
,
Von Backström
,
T. W.
, and
Kröger
,
D. G.
,
2014
, “
Packed Bed Storage for Solar Thermal Power Plants: Rock Characteristics, Suitability, and Availability
,”
Sol. Energy Mater. Sol. Cells
,
126
, pp.
170
183
.
26.
Birch
,
F.
, and
Clark
,
H.
,
1940
, “
The Thermal Conductivity of Rocks and Its Dependence Upon Temperature and Composition
,”
Am. J. Sci.
,
238
(
8
), pp.
529
558
.
27.
Zanganeh
,
G.
,
Pedretti
,
A.
,
Zavattoni
,
S.
,
Barbato
,
M.
, and
Steinfeld
,
A.
,
2012
, “
Packed Bed Thermal Storage for Concentrated Solar Power—Pilot-Scale Demonstration and Industrial-Scale Design
,”
Sol. Energy
,
86
(
10
), pp.
3084
3098
.
28.
Dinter
,
F.
,
2016
, Email Correspondence Dated Jan. 19, 2016.
29.
Hennecke
,
K.
,
Schwarzbözl
,
P.
,
Koll
,
G.
,
Beuter
,
M.
,
Hoffschmidt
,
B.
,
Göttsche
,
J.
, and
Hartz
,
T.
,
2009
, “
The Solar Power Tower Jülich a Solar Thermal Power Plant for Test and Demonstration of Air Receiver Technology
,”
ISES World Congress 2007: Solar Energy and Human Settlement
,
D. Y.
Goswami
and
Y.
Zhao
, eds.,
Springer
,
Berlin
, Vol.
I–V
, pp.
1749
1753
.
30.
Pitz-Paal
,
R.
,
Dersch
,
J.
, and
Milow
,
B.
,
2005
, “
ECOSTAR Roadmap Document
,” Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Cologne, Germany, Report No. SES6-CT-2003-502578.
31.
Hicks
,
T. G.
,
2006
,
Handbook of Mechanical Engineering Calculations: Part 1
,
2nd ed.
,
McGraw-Hill
,
New York
.
32.
Siemens
,
2011
, “
Steam Turbines for CSP Plants
,” Siemens, accessed June 15,
2015
, http://www.energy.siemens.com/nl/en/renewable-energy/solar-power/csp-steam-turbine.htm
33.
Hoffschmidt
,
B.
,
Dibowski
,
G.
,
Beuter
,
M.
, and
Fernández
,
V.
,
2003
, “
Test Results of a 3 MW Solar Open Volumetric Receiver
,”
ISES Solar World Congress
2003
,
Gothenburg, Sweden
, p. 6.
34.
Romero
,
M.
,
Marcos
,
M. J.
,
Osuna
,
R.
, and
Fernández
,
V.
,
2000
, “
Design and Implementation Plan of a 10 MW Solar Tower Power Plant Based on Volumetric-Air Technology in Seville (Spain)
,”
Solar 2000
, Madison, WI, June 17–22, pp.
89
98
.
35.
Kehlhofer
,
R. H.
,
Warner
,
J.
,
Nielsen
,
H.
, and
Bachmann
,
R.
,
1999
,
Combined-Cycle Gas and Steam Turbine Power Plants
,
2nd ed.
,
PennWell
,
Tulsa, OK
.
36.
Wagner
,
W.
,
Cooper
,
J. R.
,
Dittmann
,
A.
,
Kijima
,
J.
,
Kretzschmar
,
H.-J.
,
Kruse
,
A.
,
Mareš
,
R.
,
Oguchi
,
K.
,
Sato
,
H.
,
Stöcker
,
I.
,
Šifner
,
O.
,
Takaishi
,
Y.
,
Tanishita
,
I.
,
Trübenbach
,
J.
, and
Willkommen
,
Th.
,
2000
, “
The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
150
182
.
37.
Grasse
,
W.
,
1991
, “
PHOEBUS—International 30 MWe Solar Power Tower
,”
Sol. Energy Mater.
,
24
(
1–4
), pp.
82
94
.
38.
Duffie
,
J. A.
, and
Beckmann
,
W. A.
,
1991
,
Solar Engineering of Thermal Processes
,
2nd ed.
,
Wiley
,
New York
.
39.
Allen
,
K. G.
,
Von Backström
,
T. W.
,
Joubert
,
E. C.
, and
Gauché
,
P.
,
2016
, “
Rock Bed Thermal Storage: Concepts and Costs
,”
AIP Conf. Proc.
,
1734
, p.
050003
.
You do not currently have access to this content.