In this paper, a performance evaluation technique using most frequent conditions (MFC) for accurate design of photovoltaic systems, based on energy rating and site-specific standards is reported. Most frequent conditions are estimated for the three different technologies: multicrystalline silicon (mc-Si), amorphous silicon (a-Si), and hetero-junction with intrinsic thin layer (HIT) for the site based on air-mass, module temperatures, incident in-plane irradiance, and power output. The performances are analyzed over a period of 3 years by evaluating changes in the performance ratio, the energy yields, and the percentages of occurrence of data points corresponding to standard test condition (STC), nominal operating cell temperature (NOCT), and MFC. For MFC, performance ratio (PR) values are ranging from 0.70 to 0.83, 0.70 to 0.86, and 0.70 to 0.90 for mc-Si, a-Si, and HIT, respectively. The total energy yield of HIT is the highest followed by a-Si and mc-Si modules for this climatic zone.

References

References
1.
Cornaro
,
C.
, and
Musella
,
D.
,
2013
, “
Comparative Analysis of Crystalline and Double-Junction Amorphous Silicon Modules Performance in Outdoor Conditions
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), p.
031022
.
2.
Ichida
,
K.
,
Fukushige
,
S.
,
Nakajima
,
A.
,
Minemoto
,
T.
, and
Takakura
,
H.
,
2009
, “
Impact of Environment Factors on Solar Cell Parameters of a-Si Jmc-Si Photovoltaic Modules
,”
Sol. Energy Mater. Solar Cells
,
93
(6–7), pp.
879
883
.
3.
Ishii
,
T.
,
Otani
,
K.
,
Itagaki
,
A.
, and
Utsunomiya
,
K.
,
2012
, “
A Methodology for Estimating the Effect of Solar Spectrum on Photovoltaic Module Performance by Using Average Photon Energy and a Water Absorption Band
,”
Jpn. J. Appl. Phys.
,
51
(
10S
), p.
10NF05
.
4.
Gottschalg
,
R.
,
Betts
,
T. R.
,
Infield
,
D. G.
, and
Kearney
,
M. J.
,
2004
, “
On the Importance of Considering the Incident Spectrum When Measuring the Outdoor Performance of Amorphous Silicon Photovoltaic Devices
,”
Meas. Sci. Technol.
,
15
(
2
), pp.
460
466
.
5.
IEC
,
2006
, “
Photovoltaic Devices—Part 1: Measurement of Photovoltaic Current-Voltage Characteristics
,” Edition 2.0, International Electrotechnical Commission, Geneva, Switzerland, Standard No. IEC 60904-1.
6.
IEC
,
2009
, “
Photovoltaic Devices—Procedures for Temperature and Irradiance Corrections to Measured I-V Characteristics
,” Edition 2.0, International Electrotechnical Commission, Geneva, Switzerland, Standard No. IEC 60891.
7.
IEC
,
2008
, “
Thin-Film Terrestrial Photovoltaic (PV) Modules—Design Qualification and Type Approval
,” Edition 2.0, International Electrotechnical Commission, Geneva, Switzerland, Standard No. IEC 61646, Edition 2.0.
8.
IEC
,
2005
, “
Crystalline Silicon Terrestrial Photovoltaic (PV) Modules—Design Qualification and Type Approval
,” Edition 2.0, International Electrotechnical Commission, Geneva, Switzerland, Standard No. IEC 61215.
9.
IEC
,
2005
, “
Photovoltaic (PV) Module Performance Testing and Energy Rating—Part 1: Irradiance and Temperature Performance Measurements and Power Rating
,” Edition 1.0, International Electrotechnical Commission, Geneva, Switzerland, Standard No. IEC 61853-1.
10.
Nakada
,
Y.
,
Fukushige
,
S.
,
Minemoto
,
T.
, and
Takakura
,
H.
,
2009
, “
Seasonal Variation Analysis of the Outdoor Performance of Amorphous Si Photovoltaic Modules Using the Contour Map
,”
Sol. Energy Mater. Sol. Cells
,
93
(
3
), pp.
334
337
.
11.
Reindl
,
T.
,
Ouyang
,
J.
,
Khaing
,
A. M.
,
Ding
,
K.
,
Khoo
,
Y. S.
,
Walsh
,
T. M.
, and
Aberle
,
A. G.
,
2012
, “
Investigation of the Performance of Commercial Photovoltaic Modules Under Tropical Conditions
,”
Jpn. J. Appl. Phys.
,
51
(10S), p.
10NF11
.
12.
Midtgard
,
O. M.
,
Sætre
,
T. O.
,
Yordanov
,
G.
,
Imenes
,
A. G.
, and
Nge
,
C. L.
,
2010
, “
A Qualitative Examination of Performance and Energy Yield of Photovoltaic Modules in Southern Norway
,”
Renewable Energy
,
35
(
6
), pp.
1266
1274
.
13.
Sharma
,
V.
,
Kumar
,
A.
,
Sastry
,
O. S.
, and
Chandel
,
S. S.
,
2013
, “
Performance Assessment of Different Solar Photovoltaic Technologies Under Similar Outdoor Conditions
,”
Energy
,
58
, pp.
511
518
.
14.
Carr
,
A. J.
, and
Pryor
,
T. L.
,
2004
, “
A Comparison of the Performance of Different PV Module Types in Temperate
,”
Sol. Energy
,
76
(1–3), pp.
285
294
.
15.
Hegedus
,
S.
,
2013
, “
Review of Photovoltaic Module Energy Yield (kWh/kW): Comparison of Crystalline Si and Thin Film Technologies
,”
WIREs Energy Environ.
,
2
(
2
), pp.
218
233
.
16.
Cañete
,
C.
,
Carretero
,
J.
, and
Sidrach-de-Cardona
,
M.
,
2014
, “
Energy Performance of Different Photovoltaic Module Technologies Under Outdoor Conditions
,”
Energy
,
65
, pp.
295
302
.
17.
Minemoto
,
T.
,
Nagae
,
S.
, and
Takakura
,
H.
,
2007
, “
Impact of Spectral Irradiance Distribution and Temperature on the Outdoor Performance of Amorphous Si Photovoltaic Modules
,”
Sol. Energy Mater. Sol. Cells
,
91
(
10
), pp.
919
923
.
18.
Minemoto
,
T.
,
Fukushigeand
,
S.
, and
Takakura
,
H.
,
2009
, “
Difference in the Outdoor Performance of Bulk and Thin-Film Silicon-Based Photovoltaic Modules
,”
Sol. Energy Mater. Sol. Cells
,
93
(6–7), pp.
1062
1065
.
19.
Nayak
,
J. K.
, and
Prajapati
,
J. A.
,
2006
, “
Handbook of Energy Conscious Buildings
,” Ministry of New and Renewable Energy, Government of India.
20.
Sastry
,
O. S.
,
Saurabh
,
S.
,
Shil
,
S. K.
,
Pant
,
P. C.
,
Kumar
,
R.
,
Kumar
,
A.
, and
Bandopadhyay
,
B.
,
2010
, “
Performance Analysis of Field Exposed Single Crystalline Silicon Modules
,”
Sol. Energy Mater. Sol. Cells
,
94
(
9
), pp.
1463
1468
.
21.
Sharma
,
V.
,
Sastry
,
O. S.
,
Kumar
,
A.
,
Bora
,
B.
, and
Chandel
,
S. S.
,
2014
, “
Degradation Analysis of a-Si, (HIT) Hetro-Junction Intrinsic Thin Layer Silicon and m-C-Si Solar Photovoltaic Technologies Under Outdoor Conditions
,”
Energy
,
72
, pp.
536
546
.
22.
Sastry
,
O. S.
,
Singh
,
R. K.
,
Chandel
,
R.
,
Stephen
,
R. B.
,
Dash
,
P. K.
, and
Kumar
,
R.
,
2011
, “
Degradation in Performance Ratio and Yields of Exposed Modules Under Arid Conditions
,” 26th European Photovoltaic Solar Energy Conference and Exhibition (26th EU PVSEC), Hamburg, Germany, Sept. 5–9, p.
3090
.
23.
Wohlgemuth
,
J. H.
,
Sastry
,
O. S.
,
Stokes
,
A.
,
Singh
,
Y. K.
, and
Kumar
,
M.
,
2012
, “
Characterization of Field Exposed Thin Film Modules
,” 38th IEEE Photovoltaic Specialists Conference (
PVSC
), Austin, TX, June 3–8, pp.
002411
002415
.
24.
Kasten
,
F.
, and
Young
,
A. T.
,
1989
, “
Revised Optical Air Mass Tables and Approximation Formula
,”
Appl. Opt.
,
28
(
22
), pp.
4735
4738
.
25.
Kymakis
,
E.
,
Kalykakis
,
S.
, and
Papazoglou
,
T. M.
,
2009
, “
Performance Analysis of a Grid Connected Photovoltaic Park on the Island of Crete Energy
,”
Convers. Manage.
,
50
(
3
), pp.
433
438
.
26.
Nagae
,
S.
,
Toda
,
M.
,
Minemoto
,
T.
,
Takakura
,
H.
, and
Hamakawa
,
Y.
,
2006
, “
Evaluation of the Impact of Solar Spectrum and Temperature Variations on Output Power of Silicon-Based Photovoltaic Modules
,”
Sol. Energy Mater. Sol. Cells
,
90
(
20
), pp.
3568
3575
.
27.
Yoshida
,
S.
,
Minemoto
,
T.
,
Takei
,
R.
, and
Takakura
,
H.
,
2012
, “
Estimation of Energy and Analysis of Time-Related Degradation Using Contour Map of Photovoltaic Module Performance
,”
Jpn. J. Appl. Phys.
,
51
(10S), p.
10NF09
.
28.
Katsumata
,
N.
,
Nakada
,
Y.
,
Minemoto
,
T.
, and
Takakura
,
H.
,
2011
, “
Estimation of Irradiance and Outdoor Performance of Photovoltaic Modules by Meteorological Data
,”
Sol. Energy Mater. Sol. Cells
,
95
(
1
), pp.
199
202
.
29.
Nakada
,
Y.
,
Takahashi
,
H.
,
Ichida
,
K.
,
Minemoto
,
T.
, and
Takakura
,
H.
,
2010
, “
Influence of Clearness Index and Air Mass on Sunlight and Outdoor Performance of Photovoltaic Modules
,”
Curr. Appl. Phys.
,
10
(
2
), pp.
S261
S264
.
30.
Takei
,
R.
,
Minemoto
,
T.
,
Yoshida
,
S.
, and
Takakura
,
H.
,
2012
, “
Output Energy Estimation of Si-Based Photovoltaic Modules Using Clearness Index and Air Mass
,”
Jpn. J. Appl. Phys.
,
51
(10S), p.
10NF10
.
You do not currently have access to this content.