Three eutectic salts from a system of halide salts NaCl–KCl–ZnCl2 were chosen for detailed study of thermal and transport properties with the objective of developing a next generation high-temperature heat-transfer fluid (HTF) for concentrated solar thermal power (CSP) technology. The acceptable range of the working temperatures for the HTF is from below 250 °C to at least 800 °C. The tested properties are presented here for the three candidate eutectic salts, including melting point, heat of fusion, heat capacity, vapor pressure, viscosity, density, and thermal conductivity. Data-fitted equations are provided for all the measured properties for convenience in engineering application. It is concluded that the three eutectic salts can satisfy the needs for a high-temperature HTF and thus are recommended as a new generation high-temperature HTF.

References

References
1.
Fletcher
,
E. A.
,
2001
, “
Solar Thermal Processing: A Review
,”
ASME J. Solar Energy Eng.
,
123
(
2
), pp.
63
74
.
2.
Stekli
,
J.
,
Irwin
,
L.
, and
Pitchumani
,
R.
,
2013
, “
Technical Challenges and Opportunities for Concentrating Solar Power With Thermal Energy Storage
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021011
.
3.
Cavallaro
,
F.
,
2010
, “
Fuzzy TOPSIS Approach for Assessing Thermal-Energy Storage in Concentrated Solar Power (CSP) Systems
,”
Appl. Energy
,
87
(
2
), pp.
496
503
.
4.
Canada
,
S.
,
Brosseau
,
D. A.
, and
Price
,
H.
,
2006
, “
Design and Construction of the APS 1 MWe Parabolic Trough Power Plant
,”
ASME
Paper No. ISEC2006-99139.
5.
Radco Industries
, “
XCELTHERM® 600 Engineering Properties
,” accessed Nov. 14, 2015, http://www.radcoind.com/products/industrial-energy/xceltherm-600-engineering/
6.
Lang
,
C.
, and
Lee
,
B.
,
2015
, “
Heat Transfer Fluid Life Time Analysis of Diphenyl Oxide/Biphenyl Grades for Concentrated Solar Power Plants
,”
International Conference on Concentrating Solar Power and Chemical Energy Systems
,
SolarPACES 2014
, pp.
672
680
.
7.
Eastman Chemical Company
, “
Therminol VP-1
,” accessed Dec. 5, 2015, http://www.therminol.com/products/Therminol-VP1
8.
Sohal
,
M. S.
,
Ebner
,
M. A.
,
Sabharwall
,
P.
, and
Sharpe
,
P.
,
2010
, “
Engineering Database of Liquid Salt Thermophysical and Thermochemical Properties
,” Idaho National Laboratory, Idaho Falls, ID,
Report No. INL/EXT-10-18297
.
9.
Bradshaw
,
R. W.
, and
Siegel
,
N. P.
,
2008
, “
Molten Nitrate Salt Development for Thermal Energy Storage in Parabolic Trough Solar Power Systems
,”
ASME
Paper No. ES2009-90140.
10.
Baraka
,
A.
,
Abdel-Rohman
,
A. I.
, and
El Hosary
,
A. A.
,
1976
, “
Corrosion of Mild Steel in Molten Sodium Nitrate-Potassium Nitrate Eutectic
,”
Br. Corros. J.
,
11
(
1
), pp.
43
46
.
11.
Takahashi
,
Y.
,
Sakamoto
,
R.
, and
Kamimoto
,
M.
,
1988
, “
Heat Capacities and Latent Heat of LiNO3, NaNO3 and KNO3
,”
Int. J. Thermophys.
,
9
(
6
), pp.
1081
1090
.
12.
Mantha
,
D.
,
Wang
,
T.
, and
Reddy
,
R. G.
,
2012
, “
Thermodynamic Modeling of Eutectic Point in the LiNO3-NaNO3-KNO3 Ternary System
,”
J. Phase Equilib. Diffus.
,
33
(
2
), pp.
110
114
.
13.
Wang
,
T.
,
Mantha
,
D.
, and
Reddy
,
R. G.
,
2013
, “
Thermodynamic Properties of LiNO3-NaNO3-KNO3-KNO3·Mg(NO3)2 System
,”
Thermochim. Acta
,
551
, pp.
92
98
.
14.
Levin
,
E. M.
,
Robbins
,
C. R.
, and
McMordie
,
H. F.
,
1964
,
Phase Diagrams for Ceramists
,
American Ceramic Society
,
Westerville, OH
.
15.
Robelin
,
C.
, and
Chartrand
,
P.
,
2011
, “
Thermodynamic Evaluation and Optimization of the (NaCl + KCl + MgCl2 + CaCl2 + ZnCl2) System
,”
J. Chem. Thermodyn.
,
43
(
3
), pp.
377
391
.
16.
Nitta
,
K.
,
Nohira
,
T.
,
Hagiwara
,
R.
,
Majima
,
M.
, and
Inazawa
,
S.
,
2009
, “
Physicochemical Properties of ZnCl2–NaCl–KCl Eutectic Melt
,”
Electrochim. Acta
,
54
(
21
), pp.
4898
4902
.
17.
Vignarooban
,
K.
,
Xu
,
X.
,
Wang
,
K.
,
Molina
,
E. E.
,
Li
,
P.
,
Gervasio
,
D.
, and
Kannan
,
A. M.
,
2015
, “
Vapor Pressure and Corrosivity of Ternary Metal-Chloride Molten-Salt Based Heat Transfer Fluids for Use in Concentrating Solar Power Systems
,”
Appl. Energy
,
159
, pp.
206
213
.
18.
Wang
,
K.
,
Molina
,
E.
,
Dehghani
,
G.
,
Xu
,
B.
,
Li
,
P.
,
Hao
,
Q.
,
Lucas
,
P.
,
Kassaee
,
M. H.
,
Jeter
,
S. M.
, and
Teja
,
A. S.
,
2014
, “
Experimental Investigation to the Properties of Eutectic Salts by NaCl-KCl-ZnCl2 for Application as High Temperature Heat Transfer Fluids
,”
ASME
Paper No. ES2014-6578.
19.
Lide
,
D. R.
,
2010
,
CRC Handbook of Chemistry and Physics
,
90th ed.
,
CRC Press
,
Boca Raton, FL
, pp.
4
99
.
20.
Bloom
,
H.
,
1967
,
The Chemistry of Molten Salts: An Introduction to the Physical and Inorganic Chemistry of Molten Salts and Salt Vapors
,
W. A. Benjamin
,
New York
.
21.
Keneshea
,
F. J.
, and
Cubicciotti
,
D.
,
1964
, “
Vapor Pressures of Zinc Chloride and Zinc Bromide and Their Gaseous Dimerization
,”
J. Chem. Phys.
,
40
(
1
), pp.
191
199
.
22.
Liu
,
F.
,
Gao
,
B.
,
Wang
,
S.
,
Wang
,
Z.
, and
Shi
,
Z.
,
2009
, “
Measurement and Estimation for Density of NaNO2-KNO3-NaNO3 Ternary Molten Salts
,”
World Non-Grid-Connected Wind Power and Energy Conference
,
WNWEC 2009
, Sept. 24–26.
23.
Janz
,
G. J.
,
1988
, “
Thermodynamic and Transport Properties of Molten Salts: Correlation Equations for Critically Evaluated Density, Surface Tension, Electrical Conductance, and Viscosity Data
,”
J. Phys. Chem. Ref. Data
,
17
(
Suppl. 2
), pp.
10
100
.
24.
Kollie
,
T. G.
,
1977
, “
Measurement of the Thermal-Expansion Coefficient of Nickel From 300 to 1000 K and Determination of the Power-Law Constants Near the Curie Temperature
,”
Phys. Rev. B
,
16
(
11
), pp.
4872
4881
.
25.
Kassaee
,
M. H.
,
Jeter
,
S. M.
, and
Teja
,
A. S.
,
2014
, “
New Models for Thermal Conductivity and Viscosity of Molten Salts Based on Rough Hard Sphere Method
,”
ASME
Paper No. ES-FuelCell2014-6486.
26.
DiGuilio
,
R. M.
, and
Teja
,
A. S.
,
1992
, “
The Thermal Conductivity of the Molten NaNO3-KNO3 Eutectic Between 525 and 590 K
,”
Int. J. Thermophys.
,
13
(
4
), pp.
575
592
.
27.
Hossain
,
M. Z.
,
Kassaee
,
M. H.
,
Jeter
,
S.
, and
Teja
,
A. S.
,
2014
, “
A New Model for the Thermal Conductivity of Molten Salts
,”
Int. J. Thermophys.
,
35
(
2
), pp.
246
255
.
28.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2011
,
Theory and Design for Mechanical Measurements
,
5th ed.
,
Wiley
,
New York
.
29.
Li
,
P.
, and
Zhang
,
Y.
,
2015
, “
Minimum System Entropy Production for the Figure of Merit of High Temperature Heat Transfer Fluid Properties
,”
Energy Technology 2015: Carbon Dioxide Management and Other Technologies, TMS (The Minerals, Metals & Materials Society) Conference
, Orlando, FL, pp.
359
372
.
You do not currently have access to this content.