This paper evaluates cost and performance tradeoffs of alternative supercritical carbon dioxide (s-CO2) closed-loop Brayton cycle configurations with a concentrated solar heat source. Alternative s-CO2 power cycle configurations include simple, recompression, cascaded, and partial cooling cycles. Results show that the simple closed-loop Brayton cycle yielded the lowest power-block component costs while allowing variable temperature differentials across the s-CO2 heating source, depending on the level of recuperation. Lower temperature differentials led to higher sensible storage costs, but cycle configurations with lower temperature differentials (higher recuperation) yielded higher cycle efficiencies and lower solar collector and receiver costs. The cycles with higher efficiencies (simple recuperated, recompression, and partial cooling) yielded the lowest overall solar and power-block component costs for a prescribed power output.

References

References
1.
Ho
,
C. K.
,
Conboy
,
T.
,
Ortega
,
J.
,
Afrin
,
S.
,
Gray
,
A.
,
Christian
,
J. M.
,
Bandyopadyay
,
S.
,
Kedare
,
S. B.
,
Singh
,
S.
, and
Wani
,
P.
,
2014
, “
High-Temperature Receiver Designs for Supercritical CO2 Closed-Loop Brayton Cycles
,”
ASME
Paper No. ES2014-6328.
2.
Iverson
,
B. D.
,
Conboy
,
T. M.
,
Pasch
,
J. J.
, and
Kruizenga
,
A. M.
,
2013
, “
Supercritical CO2 Brayton Cycles for Solar-Thermal Energy
,”
Appl. Energy
,
111
, pp.
957
970
.
3.
Turchi
,
C. S.
,
Ma
,
Z. W.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
041007
.
4.
Neises
,
T.
, and
Turchi
,
C.
,
2014
, “
A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations With an Emphasis on CSP Applications
,”
Solarpaces 2013 International Conference
, Vol.
49
, pp.
1187
1196
.
5.
Wright
,
S. A.
,
Pickard
,
P. S.
,
Fuller
,
R.
,
Radel
,
R. F.
, and
Vernon
,
M. E.
,
2009
, “
Supercritical CO2 Brayton Cycle Power Generation Development Program and Initial Test Results
,”
ASME
Paper No. POWER2009-81081.
6.
Frutschi
,
H. U.
,
2005
,
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
,
ASME Press
,
New York
, p.
283
.
7.
U.S. DOE Nuclear Energy Research Advisory Committee and Generation IV International Forum
,
2002
, “
A Technology Roadmap for Generation IV Nuclear Energy Systems
,” U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, Washington, DC,
No. GIF-002-00
.
8.
Feher
,
E. G.
,
1968
, “
The Supercritical Thermodynamic Power Cycle
,”
Energy Convers.
,
8
(
2
), pp.
85
90
.
9.
Kacludis
,
A.
,
Lyons
,
S.
,
Nadav
,
D.
, and
Zdankiewicz
,
E.
,
2012
, “
Waste Heat to Power (WH2P) Applications Using a Supercritical CO2-Based Power Cycle
,”
Power—Gen International 2012
, Orlando, FL, Dec. 11–13, pp. 11–13.
10.
Persichilli
,
M.
,
Held
,
T.
,
Hostler
,
S.
, and
Zdankiewicz
,
E.
,
2011
, “
Transforming Waste Heat to Power Through Development of a CO2—Based Power Cycle
,”
Electric Power Expo 2011
, Rosemount, IL, pp. 10–12.
11.
Persichilli
,
M.
,
Kacludis
,
A.
,
Zdankiewicz
,
E.
, and
Held
,
T.
,
2012
, “
Supercritical CO2 Power Cycle Developments and Commercialization: Why s-CO2 Can Displace Steam
,”
Power-Gen India & Central Asia 2012
, Pragati Maidan, New Delhi, India, Apr. 19–21.
12.
Held
,
T. J.
,
Hostler
,
S.
,
Miller
,
J. D.
,
Vermeersch
,
M.
, and
Xle
,
T.
,
2013
, “
Heat Engine and Heat to Electricity Systems and Methods With Working Fluid Mass Management Control
,”
U.S. Patent No. US8613195B224
.
13.
Angelino
,
G.
,
1968
, “
Carbon Dioxide Condensation Cycles for Power Production
,”
ASME J. Eng. Power
,
90
(
3
), pp.
287
295
.
14.
Dyreby
,
J.
,
Klein
,
S.
,
Nellis
,
G.
, and
Reindl
,
D.
,
2014
, “
Design Considerations for Supercritical Carbon Dioxide Brayton Cycles With Recompression
,”
ASME J. Eng. Gas Turbines Power
,
136
(
10
), p. 101701.
15.
Gavic
,
D. J.
,
2012
, “
Investigation of Water, Air, and Hybrid Cooling for Supercritical Carbon Dioxide Brayton Cycles
,” Masters thesis, University of Wisconsin-Madison, Madison, WI.
16.
Hoffmann
,
J. R.
, and
Feher
,
E. G.
,
1971
, “
150 Kwe Supercritical Closed Cycle System
,”
ASME J. Eng. Power
,
93
(
1
), pp.
70
80
.
17.
Angelino
,
G.
,
1967
, “
Perspectives for Liquid Phase Compression Gas Turbine
,”
ASME J. Eng. Power
,
89
(
2
), pp.
229
236
.
18.
Angelino
,
G.
,
1967
, “
Liquid-Phase Compression Gas Turbine for Space Power Applications
,”
J. Spacecr. Rockets
,
4
(
2
), pp.
188
194
.
19.
Angelino
,
G.
,
1969
, “
Real Gas Effects in Carbon Dioxide Cycles
,”
ASME
Paper No. 69-GT-102.
20.
Angelino
,
G.
,
1971
, “
Real Gas Effects in Carbon Dioxide Cycles
,”
Atomkernenergie
,
17
(
1
), pp.
27
33
.
21.
Angelino
,
G.
,
1978
, “
Use of Liquid Natural-Gas as Heat Sink for Power Cycles
,”
ASME J. Eng. Power
,
100
(
1
), pp.
169
177
.
22.
Dostal
,
V.
,
Hejzlar
,
P.
, and
Driscoll
,
M. J.
,
2006
, “
High-Performance Supercritical Carbon Dioxide Cycle for Next-Generation Nuclear Reactors
,”
Nucl. Technol.
,
154
(
3
), pp.
265
282
.
23.
Kimzey
,
G.
,
2012
, “
Development of a Brayton Bottoming Cycle Using Supercritical Carbon Dioxide as the Working Fluid
,” Electric Power Research Institute,
University Turbine Systems Research Program
, Gas Turbine Industrial Fellowship, Palo Alto, CA.
24.
Garg
,
P.
,
Sriram
,
H. K.
,
Kumar
,
P.
,
Conboy
,
T.
, and
Ho
,
C.
,
2014
, “
Advanced Low Pressure Cycle for Concentrated Solar Power Generation
,”
ASME
Paper No. ES2014-6545.
25.
Driscoll
,
M. J.
, and
Hejzlar
,
P.
,
2004
, “
300 MWe Supercritical CO2 Plant Layout and Design
,” Center for Advanced Nuclear Energy Systems, MIT Nuclear Engineering Department, Cambridge, MA,
Topical Report No. MIT-GFR-014
.
26.
Schlenker
,
H. V.
,
1974
, “
Cost Functions for HTR-Direct-Cycle Components
,”
Atomkernenergie
,
22
(
4
), pp.
226
235
.
27.
ESDU
,
1994
, “
Selection and Costing of Heat Exchangers
,” Engineering Sciences Data Unit, London, UK, No. ESDU 92013.
28.
Peters
,
M. S.
,
Timmerhaus
,
K. D.
, and
West
,
R. E.
,
2003
,
Plant Design and Economics for Chemical Engineers
,
5th ed.
,
McGraw-Hill
,
New York
, p.
988
.
29.
Siegel
,
N. P.
,
Ho
,
C. K.
,
Khalsa
,
S. S.
, and
Kolb
,
G. J.
,
2010
, “
Development and Evaluation of a Prototype Solid Particle Receiver: On-Sun Testing and Model Validation
,”
ASME J. Sol. Energy Eng.
,
132
(
2
), p. 021008.
30.
Kolb
,
G. J.
,
Ho
,
C. K.
,
Mancini
,
T. R.
, and
Gary
,
J. A.
,
2011
, “
Power Tower Technology Roadmap and Cost Reduction Plan
,” Sandia National Laboratories, Albuquerque, NM,
Report No. SAND2011-2419
.
31.
Falcone
,
P. K.
,
Noring
,
J. E.
, and
Hruby
,
J. M.
,
1985
, “
Assessment of a Solid Particle Receiver for a High Temperature Solar Central Receiver System
,” Sandia National Laboratories, Livermore, CA,
Report No. SAND85-8208
.
You do not currently have access to this content.