A low-temperature (<120 °C) solar organic Rankine cycle (ORC) power generation experimental facility is designed and built. The influence of light intensity on the system performance is investigated using the experimental facility. The results indicate that the system efficiency can reach 2.2%. The temperature of heat transfer fluid (HTF) decreases linearly with light intensity (I). However, both system efficiency and thermoelectric efficiency first decrease linearly and then drop sharply as I decreases at working fluid flow rates (Vwf) of 200 and 160 L/hr, while they only decrease slightly with I at Vwf of 120 L/hr. The light intensity of the turning point is 824 W/m2 at Vwf of 200 L/hr, which corresponds to an HTF temperature of 75 °C. In addition, it is found that the influence of light intensity on the performance of ORC becomes stronger for higher working fluid flow rate. Moreover, the light intensity and HTF temperature at the turning point increase with working fluid flow rate. The experimental results are of great significance for the design and operation of low-temperature solar ORC power generation system.

References

References
1.
Quoilin
,
S.
,
Orosz
,
M.
,
Hemond
,
H.
, and
Lemort
,
V.
,
2011
, “
Performance and Design Optimization of a Low-Cost Solar Organic Rankine Cycle for Remote Power Generation
,”
Sol. Energy
,
85
(
5
), pp.
955
966
.
2.
Ksayer
,
E. B. L.
,
2011
, “
Design of an ORC System Operating With Solar Heat and Producing Sanitary Hot Water
,”
Energy Procedia
,
6
, pp.
389
395
.
3.
Vélez
,
F.
,
Segovia
,
J. J.
,
Martín
,
M. C.
,
Antolín
,
G.
,
Chejne
,
F.
, and
Quijano
,
A.
,
2012
, “
A Technical, Economical and Market Review of Organic Rankine Cycles for the Conversion of Low-Grade Heat for Power Generation
,”
Renewable Sustainable Energy Rev.
,
16
(
6
), pp.
4175
4189
.
4.
Kalogirou
,
S. A.
,
2004
, “
Solar Thermal Collectors and Applications
,”
Prog. Energy Combust. Sci.
,
30
(
3
), pp.
231
295
.
5.
Mills
,
D.
,
2004
, “
Advances in Solar Thermal Electricity Technology
,”
Sol. Energy
,
76
(
1–3
), pp.
19
31
.
6.
He
,
Z. N.
,
Jiang
,
F. L.
,
Ge
,
H. C.
, and
Li
,
W.
,
1994
, “
Study on Thermal Performance of Heat Pipe Evacuated Tubular Collectors
,”
Acta Energ. Sol. Sin.
,
15
(
1
), pp.
73
82
.
7.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes
,
4th ed.
,
Wiley
,
New York
, Chap. 6.
8.
Rayegan
,
R.
, and
Tao
,
Y. X.
,
2013
, “
Optimal Collector Type and Temperature in a Solar Organic Rankine Cycle System for Building-Scale Power Generation in Hot and Humid Climate
,”
ASME J. Sol. Energy Eng.
,
135
(
1
), p.
011012
.
9.
Quoilin
,
S.
, and
Lemort
,
V.
,
2009
, “
Technological and Economical Survey of Organic Rankine Cycle Systems
,”
5th European Conference Economics and Management of Energy in Industry
, Algarve, Portugal, Apr. 14–17.
10.
McMahan
,
A.
,
Klein
,
S. A.
, and
Reindl
,
D. T.
,
2007
, “
A Finite-Time Thermodynamic Framework for Optimizing Solar-Thermal Power Plants
,”
ASME J. Sol. Energy Eng.
,
129
(
4
), pp.
355
362
.
11.
Marion
,
M.
,
Voicu
,
I.
, and
Tiffonnet
,
A. L.
,
2012
, “
Study and Optimization of a Solar Subcritical Organic Rankine Cycle
,”
Renewable Energy
,
48
, pp.
100
109
.
12.
Delgado-Torres
,
A.
, and
Garcia-Rodriguez
,
L.
,
2010
, “
Analysis and Optimization of the Low-Temperature Solar Organic Rankine Cycle (ORC)
,”
Energy Convers. Manage.
,
51
(
12
), pp.
2846
2856
.
13.
Saleh
,
B.
,
Koglbauer
,
G.
,
Wendland
,
M.
, and
Fischer
,
J.
,
2007
, “
Working Fluids for Low-Temperature Organic Rankine Cycles
,”
Energy
,
32
(
7
), pp.
1210
1221
.
14.
Tchache
,
B. F.
,
Papadakis
,
G.
,
Lambrinos
,
G.
, and
Frangoudakis
,
A.
,
2009
, “
Fluid Selection for a Low Temperature Solar Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
29
(
11–12
), pp.
2468
2476
.
15.
Gu
,
W.
,
Weng
,
Y. W.
,
Wang
,
Y. J.
, and
Zheng
,
B.
,
2009
, “
Theoretical and Experimental Investigation of an Organic Rankine Cycle for a Waste Heat Recovery System
,”
Proc. Inst. Mech. Eng., Part A
,
223
(
5
), pp.
523
533
.
16.
Lemort
,
V.
,
Quoilin
,
S.
, and
Cuevas
,
C.
,
2009
, “
Testing and Modeling a Scroll Expander Integrated Into an Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
29
(
14–15
), pp.
3094
3102
.
You do not currently have access to this content.