Concentrating photovoltaic (CPV) is a solution that is gaining attention worldwide as a potential global player in the future energy market. Despite the impressive development in terms of CPV cell efficiency recorded in the last few years, a lack of information on the module's manufacturing is still registered among the documents available in literature. This work describes the challenges faced to fabricate a densely packed cell assembly for 500× CPV applications. The reasons behind the choice of components, materials, and processes are highlighted, and all the solutions applied to overtake the problems experienced after the prototype's production are reported. This article explains all the stages required to achieve a successful fabrication, proven by the results of quality tests and experimental investigations conducted on the prototype. The reliability of the components and the interconnectors is successfully assessed through standard mechanical destructive tests, and an indoor characterization is conducted to investigate the electrical performance. The fabricated cell assembly shows a fill factor as high as 84%, which proves the low series resistance and the lack of mismatches. The outputs are compared with those of commercial assemblies. A cost breakdown is reported and commented: a cost of $0.79/Wp has been required to fabricate each of the cell assembly described in this paper. This value has been found to be positively affected by the economy of scale: a larger number of assemblies produced would have reduced it by 17%.

References

References
1.
Zheng
,
C.
, and
Kammen
,
D. M.
,
2014
, “
An Innovation-Focused Roadmap for a Sustainable Global Photovoltaic Industry
,”
Energy Policy
,
67
, pp.
159
169
.
2.
European Photovoltaic Industry Association
,
2014
, “
Global Market Outlook for Photovoltaics 2014–2018
.”
3.
IEA PVPS
,
2015
, “
Trends 2015 in Photovoltaic Applications
,” Report No. IEA-PVPS T1-27:2015.
4.
Ameli
,
N.
, and
Kammen
,
D. M.
,
2014
, “
Innovations in Financing That Drive Cost Parity for Long-Term Electricity Sustainability: An Assessment of Italy, Europe's Fastest Growing Solar Photovoltaic Market
,”
Energy Sustainable Dev.
,
19
, pp.
130
137
.
5.
Luque
,
A.
,
Sala
,
G.
, and
Luque-Heredia
,
I.
,
2006
, “
Photovoltaic Concentration at the Onset of Its Commercial Deployment
,”
Prog. Photovoltaics: Res. Appl.
,
14
(
5
), pp.
413
428
.
6.
Pérez-Higueras
,
P.
,
Muñoz
,
E.
,
Almonacid
,
G.
, and
Vidal
,
P. G.
,
2011
, “
High Concentrator Photovoltaics Efficiencies: Present Status and Forecast
,”
Renewable Sustainable Energy Rev.
,
15
(
4
), pp.
1810
1815
.
7.
Horowitz
,
K.
,
Woodhouse
,
M.
,
Lee
,
H.
, and
Smestad
,
G. P.
,
2015
, “
A Bottom-Up Cost Analysis of High Concentration PV Module
,”
AIP Conf. Proc.
,
1679
, p.
100001
.
8.
Philipps
,
S. P.
,
Bett
,
A. W.
,
Horowitz
,
K.
, and
Kurtz
,
S.
,
2015
, “
Current Status of Concentrator Photovoltaic (CPV) Technology
,” Report No. TP-6A20-63916.
9.
Talavera
,
D. L.
,
Pérez-Higueras
,
P.
,
Ruíz-Arias
,
J. A.
, and
Fernández
,
E. F.
,
2015
, “
Levelised Cost of Electricity in High Concentrated Photovoltaic Grid Connected Systems: Spatial Analysis of Spain
,”
Appl. Energy
,
151
, pp.
49
59
.
10.
Kurtz
,
S.
,
2011
, “
Opportunities and Challenges for Development of a Mature Concentrating Photovoltaic Power Industry
,” National Renewable Energy Laboratory, Golden, CO,
Report No. NREL/TP-5200-43208
.
11.
Green
,
M. A.
, and
Ho-Baillie
,
A.
,
2010
, “
Forty-Three Percent Composite Split-Spectrum Concentrator Solar Cell Efficiency
,”
Prog. Photovoltaics: Res. Appl.
,
18
(
1
), pp.
42
47
.
12.
Green
,
M. A.
,
Emery
,
K.
,
Hishikawa
,
Y.
,
Warta
,
W.
, and
Dunlop
,
E. D.
,
2015
, “
Solar Cell Efficiency Tables (Version 46)
,”
Prog. Photovoltaics: Res. Appl.
,
23
(
7
), pp.
805
812
.
13.
King
,
R. R.
,
Law
,
D. C.
,
Edmondson
,
K. M.
,
Fetzer
,
C. M.
,
Kinsey
,
G. S.
,
Yoon
,
H.
,
Krut
,
D. D.
,
Ermer
,
J. H.
,
Sherif
,
R. A.
, and
Karam
,
N. H.
,
2007
, “
Advances in High-Efficiency III-V Multijunction Solar Cells
,”
Adv. OptoElectron.
,
2007
, pp.
1
8
.
14.
Friedman
,
D.
,
King
,
R.
, and
Swanson
,
R.
,
2013
, “
Editorial: Toward 100 Gigawatts of Concentrator Photovoltaics by 2030
,”
IEEE J. Photovoltaics
,
3
(
4
), pp.
1460
1463
.
15.
Green
,
M. A.
,
Emery
,
K.
,
Hishikawa
,
Y.
,
Warta
,
W.
, and
Dunlop
,
E. D.
,
2015
, “
Solar Cell Efficiency Tables (Version 45)
,”
Prog. Photovoltaics: Res. Appl.
,
23
(
1
), pp.
1
9
.
16.
Royne
,
A.
,
Dey
,
C. J.
, and
Mills
,
D. R.
,
2005
, “
Cooling of Photovoltaic Cells Under Concentrated Illumination: A Critical Review
,”
Sol. Energy Mater. Sol. Cells
,
86
(
4
), pp.
451
483
.
17.
Reeser
,
A.
,
Wang
,
P.
,
Hetsroni
,
G.
, and
Bar-Cohen
,
A.
,
2014
, “
Energy Efficient Two-Phase Microcooler Design for a Concentrated Photovoltaic Triple Junction Cell
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
031015
.
18.
Smith
,
M. K.
,
Selbak
,
H.
,
Wamser
,
C. C.
,
Day
,
N. U.
,
Krieske
,
M.
,
Sailor
,
D. J.
, and
Rosenstiel
,
T. N.
,
2014
, “
Water Cooling Method to Improve the Performance of Field-Mounted, Insulated, and Concentrating Photovoltaic Modules
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
034503
.
19.
Kerzmann
,
T.
, and
Schaefer
,
L.
,
2013
, “
Flow Rate Optimization of a Linear Concentrating Photovoltaic System
,”
ASME J. Sol. Energy Eng.
,
135
(
2
), p.
021009
.
20.
IEC
,
2007
, “
Concentrator Photovoltaic (CPV) Modules and Assemblies—Design Qualification and Type Approval
,” International Electrotechnical Commission, Geneva, Switzerland, Standard No. IEC 62108:2007.
21.
Aeby
,
I.
,
Aiken
,
D.
,
Clevenger
,
B.
,
Newman
,
F.
,
Patel
,
P.
,
Varghese
,
T.
,
Dempsey
,
C.
,
Flynn
,
G.
,
Foresi
,
J.
,
Bett
,
A. W.
,
McConnell
,
R. D.
,
Sala
,
G.
, and
Dimroth
,
F.
,
2010
, “
High Concentration CPV Reliability Progress at Emcore
,”
AIP Conf. Proc.
,
1277
(
1
), pp.
229
232
.
22.
Cao
,
M.
,
Butler
,
S.
,
Benoit
,
J. T.
,
Jiang
,
Y.
,
Radhakrishnan
,
R.
,
Chen
,
Y.
,
Bendapudi
,
S.
, and
Horne
,
S.
,
2008
, “
Thermal Stress Analysis/Life Prediction of Concentrating Photovoltaic Module
,”
ASME J. Sol. Energy Eng.
,
130
(
2
), p.
021011
.
23.
Foresi
,
J. S.
,
Yang
,
L.
,
Blumenfeld
,
P.
,
Nagyvary
,
J.
,
Flynn
,
G.
, and
Aiken
,
D.
,
2010
, “
EMCORE Receivers for CPV System Development
,” 35th
IEEE
Photovoltaic Specialists Conference
, Honolulu, HI, June 20–25, pp.
209
212
.
24.
Fisher
,
B.
,
Ghosal
,
K.
,
Riley
,
D.
,
Hansen
,
C.
,
King
,
B.
, and
Burroughs
,
S.
,
2014
, “
Field Performance Modeling of Semprius CPV Systems
,”
IEEE
40th Photovoltaic Specialists Conference
, Denver, CO, June 8–13, pp.
759
765
.
25.
Kinsey
,
G. S.
,
Nayak
,
A.
,
Liu
,
M.
, and
Garboushian
,
V.
,
2011
, “
Increasing Power and Energy in Amonix CPV Solar Power Plants
,”
IEEE J. Photovoltaics
,
1
(
2
), pp.
213
218
.
26.
Gombert
,
A.
,
Wanka
,
S.
,
Gerster
,
E.
,
van Riesen
,
S.
,
Neubauer
,
M.
,
Lange
,
G.
,
Hamidi
,
A.
,
Burke
,
T.
,
Stoür
,
J.
,
Aipperspach
,
W.
,
Taliercio
,
C.
,
Mader
,
L.
,
Valli
,
A.
,
Ziegler
,
M.
,
Hepp
,
S.
,
Heile
,
I.
,
Gerstmaier
,
T.
, and
Haarburger
,
K.-F.
,
2012
, “
From a 32 m2 System With 90 CPV Modules to a 105 m2 System With 12 CPV Modules-Soitec's New CPV System CX-S530
,”
AIP Conf. Proc.
,
1477
, pp.
200
203
.
27.
Steiner
,
M.
,
Bösch
,
A.
,
Dilger
,
A.
,
Dimroth
,
F.
,
Dörsam
,
T.
,
Muller
,
M.
,
Hornung
,
T.
,
Siefer
,
G.
,
Wiesenfarth
,
M.
, and
Bett
,
A. W.
,
2014
, “
FLATCON CPV Module With 36.7% Efficiency Equipped With Four-Junction Solar Cells
,”
Prog. Photovoltaics: Res. Appl.
,
23
(
10
), pp.
1323
1329
.
28.
Ghosal
,
K.
,
Lilly
,
D.
,
Gabriel
,
J.
,
Seel
,
S.
,
Fisher
,
B.
,
Burroughs
,
S.
,
Drive
,
P.
, and
Suite
,
C.
,
2014
, “
Semprius Module and System Results
,”
IEEE 40th Photovoltaic Specialist Conference
(
PVSC
), Denver, CO, June 8–13, pp.
3287
3292
.
29.
Wiesenfarth
,
M.
,
Dörsam
,
T.
,
Eltermann
,
F.
,
Hornung
,
T.
,
Siefer
,
G.
,
Steiner
,
M.
,
van Riesen
,
S.
,
Neubauer
,
M.
,
Boos
,
A.
,
Wanka
,
S.
,
Gombert
,
A.
, and
Bett
,
A. W.
,
2015
, “
CPV Module With Fresnel Lens Primary Optics and Homogenizing Secondary Optics
,”
AIP Conf. Proc.
,
1679
, p.
100007
.
30.
Steiner
,
M.
,
Kiefel
,
P.
,
Siefer
,
G.
,
Wiesenfarth
,
M.
,
Dimroth
,
F.
,
Krause
,
R.
,
Gombert
,
A.
, and
Bett
,
A. W.
,
2015
, “
CPV Module Design Optimization for Advanced Multi-Junction Solar Cell Concepts
,”
AIP Conf. Proc.
,
1679
, p.
100005
.
31.
Plesniak
,
A.
,
Garboushian
,
V.
,
Liu
,
M.
,
Gordon
,
R.
, and
Bagienski
,
W.
,
2013
, “
An Introduction to the Amonix 8700 Solar Power Generator
,”
Proc. SPIE
,
8821
, p.
88210D
.
32.
Nickelsen
,
J.
, Jr.
,
Je Sung
,
P.
, and
Pycroft
,
G.
,
2013
, “
Concentrated Photovoltaic Receiver Package With Stacked Internal Support Features
,”
U.S. Patent No. 8,502,361, 1(12)
.
33.
Fork
,
D.
, and
Duff
,
D.
,
2007
, “
Solar Concentrating Photovoltaic Device With Resilient Cell Package Assembly
,” WO Patent No. WO2007130796 A3.
34.
Hasin
,
S.
, and
Helfan
,
R.
,
2013
, “
Photovoltaic Module Assembly
,” U.S. patent application 13/311,113, 1(19).
35.
Duggan
,
G.
,
2014
, “
Concentrated Photovoltaic (CPV) Cell Module With Secondary Optical Element and Method of Fabrication
,” Patent No. WO2014037722 A1.
36.
Foresi
,
J.
,
Babej
,
A.
,
Han
,
R.
,
Wang
,
C.
, and
King
,
D.
,
2014
, “
Suncore's CPV Power Plant Deployment in Western China
,”
IEEE
40th Photovoltaic Specialist Conference
, Denver, CO, June 8–13, pp.
3282
3286
.
37.
Ghosal
,
K.
,
Lilly
,
D.
,
Gabriel
,
J.
,
Whitehead
,
M.
,
Seel
,
S.
,
Fisher
,
B.
,
Wilson
,
J.
, and
Burroughs
,
S.
,
2014
, “
Semprius Field Results and Progress in System Development
,”
IEEE J. Photovoltaics
,
4
(
2
), pp.
703
708
.
38.
Kinsey
,
G. S.
,
Stone
,
K.
,
Brown
,
J.
, and
Garboushian
,
V.
,
2010
, “
Amonix CPV Solar Power Plants
,” 35th
IEEE
Photovoltaics Specialist Conference
, Honolulu, HI, June 20–25, Vol.
3
, p.
000820
.
39.
2011
, “
Soitec CPV Plant Powers COP17 Climate Talks
,”
Renewable Energy Focus
,
12
(
6
).
40.
Lasich
,
J.
,
Thomas
,
I.
,
Hertaeg
,
W.
,
Shirley
,
D.
,
Faragher
,
N.
,
Erenstrom
,
N.
,
Carter
,
S.
,
Cox
,
B.
, and
Zuo
,
X.
,
2015
, “
A 200 kW Central Receiver CPV System
,”
AIP Conf. Proc.
,
1679
, p.
030004
.
41.
Foresi
,
J.
,
Wang
,
C.
,
Babej
,
A.
,
Han
,
R.
, and
Liao
,
T.
,
2014
, “
Suncore's CPV Technology for Large-Scale Grid-Connected Solar Power Plants
,”
Light, Energy and the Environment
,
OSA
,
Washington, DC
.
42.
Timò
,
G.
,
2014
,
Results of the APOLLON Project and Concentrating Photovoltaic Perspective
, Ricerca sul Sistema Energetico, Milan, Italy.
43.
Micheli
,
L.
,
Sarmah
,
N.
,
Fernández
,
E. F.
,
Reddy
,
K. S.
, and
Mallick
,
T. K.
,
2014
, “
Technical Issues and Challenges in the Fabrication of a 144-Cell 500× Concentrating Photovoltaic Receiver
,”
IEEE 40th Photovoltaic Specialist Conference
(
PVSC
), Denver, CO, June 8–13, pp.
2921
2925
.
44.
Mallick
,
T.
,
Sarmah
,
N.
,
Banerjee
,
S.
,
Micheli
,
L.
,
Reddy
,
K. S.
,
Ghosh
,
P.
,
Walker
,
G.
,
Choudhury
,
S.
,
Pourkashanian
,
M.
,
Hamilton
,
J.
,
Giddings
,
D.
,
Walker
,
M.
,
Manickam
,
K.
,
Hazara
,
A.
,
Balachandran
,
S.
,
Lokeswaran
,
S.
,
Grant
,
D.
,
Nimmo
,
W.
, and
Mathew
,
A.
,
2013
, “
Design Concept and Configuration of a Hybrid Renewable Energy System for Rural Electrification in India Through BioCPV Project
,”
4th International Conference on Advances in Energy Research
(
ICAER
), Mumbai, India, Dec. 10–12, pp. 1662–1670.
45.
Reddy
,
K. S.
,
Lokeswaran
,
S.
,
Agarwal
,
P.
, and
Mallick
,
T. K.
,
2014
, “
Numerical Investigation of Micro-Channel Based Active Module Cooling for Solar CPV System
,”
Energy Procedia
,
54
, pp.
400
416
.
46.
Micheli
,
L.
,
Sarmah
,
N.
,
Luo
,
X.
,
Reddy
,
K. S.
, and
Mallick
,
T. K.
,
2014
, “
Design and Production of a 2.5 kWe Insulated Metal Substrate-Based Densely Packed CPV Assembly
,”
AIP Conf. Proc.
, 1616, pp.
196
199
.
47.
Micheli
,
L.
,
Sarmah
,
N.
,
Reddy
,
K. S.
,
Luo
,
X.
, and
Mallick
,
T. K.
,
2015
, “
Design, Development, and Analysis of a Densely Packed 500× Concentrating Photovoltaic Cell Assembly on Insulated Metal Substrate
,”
Int. J. Photoenergy
,
2015
, pp.
1
18
.
48.
Martinelli
,
G.
, and
Stefancich
,
M.
,
2007
, “
Solar Cell Cooling
,”
Concentrator Photovoltaics
,
Springer
, Berlin, pp.
133
149
.
49.
Mabille
,
L.
,
Mangeant
,
C.
, and
Baudrit
,
M.
,
2012
, “
Development of CPV Solar Receiver Based on Insulated Metal Substrate (IMS): Comparison With Receiver Based on the Direct Bonded Copper Substrate (DBC)—A Reliability Study
,”
AIP Conf. Proc.
,
1477
, pp.
289
293
.
50.
Berquist Co.
, “
Baseplate Design Considerations
,” Henkel Electronics Materials, Chanhassen, MN, pp.
12
13
.
51.
Yoon
,
J.-W.
,
Noh
,
B.-I.
, and
Jung
,
S.-B.
,
2011
, “
Comparative Study of ENIG and ENEPIG as Surface Finishes for a Sn-Ag-Cu Solder Joint
,”
J. Electron. Mater.
,
40
(
9
), pp.
1950
1955
.
52.
Ratzker
,
M.
,
Pearl
,
A.
,
Osterman
,
M.
,
Pecht
,
M.
, and
Milad
,
G.
,
2014
, “
Review of Capabilities of the ENEPIG Surface Finish
,”
J. Electron. Mater.
,
43
(
11
), pp.
3885
3897
.
53.
Puttlitz
,
K. J.
, and
Stalter
,
K. A.
,
2004
,
Handbook of Lead-Free Solder Technology for Microelectronic Assemblies
,
CRC Press
, Boca Raton, FL.
54.
2014
, “
3C42 Concentrator Triple Junction Solar Cell Datasheet
,” Azur Space Solar Power, Heilbronn, Germany.
55.
Calabrese
,
G.
,
Gualdi
,
F.
,
Baricordi
,
S.
,
Bernardoni
,
P.
,
Guidi
,
V.
,
Pozzetti
,
L.
, and
Vincenzi
,
D.
,
2014
, “
Numerical Simulation of the Temperature Distortions in InGaP/GaAs/Ge Solar Cells Working Under High Concentrating Conditions Due to Voids Presence in the Solder Joint
,”
Sol. Energy
,
103
, pp.
1
11
.
56.
Dusek
,
K.
,
2012
, “
Study of the Components Self-Alignment in Surface Mount Technology
,”
35th International Spring Seminar on Electronics
(
ISSE
) Technology, Vienna, Austria, May 9–13, pp.
197
200
.
57.
Concentration PhotoVoltaic (CPV): The Next Generation
,” AUREL s.p.a., Modigliana, Italy.
58.
Shah
,
J.
,
2012
, “
Estimating Bond Wire Current-Carrying Capacity
,”
Power Syst. Des.
,
July–August
, pp.
22
25
.
59.
Hebert
,
P.
,
Frost
,
J.
,
Cravens
,
R.
, and
Woo
,
R.
,
2011
, “
What Not to Do
,”
NREL PV Reliability Workshop
,
Golden, CO
.
60.
Micheli
,
L.
,
2015
, “
Enhancing Electrical and Heat Transfer Performance of High-Concentrating Photovoltaic Receivers
,” Ph.D. thesis, University of Exeter, Penryn, UK.
61.
Núñez
,
R.
,
Domínguez
,
C.
,
Askins
,
S.
,
Victoria
,
M.
,
Herrero
,
R.
,
Antón
,
I.
, and
Sala
,
G.
,
2015
, “
Determination of Spectral Variations by Means of Component Cells Useful for CPV Rating and Design
,”
Prog. Photovoltaics: Res. Appl.
,
20
(
1
).
62.
García-linares
,
P.
,
Domínguez
,
C.
,
Voarino
,
P.
,
Besson
,
P.
,
Baudrit
,
M.
, and
Bourget
,
L.
,
2014
, “
Effect of the Encapsulant Temperature on the Angular and Spectral Response of Multi-Junction Solar Cells
,” 40th
IEEE
Photovoltaic Specialists Conference
, Denver, CO, June 8–13m, pp.
3298
3303
.
63.
Fernández
,
E. F.
,
Pérez-Higueras
,
P.
,
Garcia Loureiro
,
A. J.
, and
Vidal
,
P. G.
,
2013
, “
Outdoor Evaluation of Concentrator Photovoltaic Systems Modules From Different Manufacturers: First Results and Steps
,”
Prog. Photovoltaics: Res. Appl.
,
21
, pp.
693
701
.
64.
Fernández
,
E. F.
,
Loureiro
,
A. J. G.
, and
Smestad
,
G. P.
,
2015
, “
Multijunction Concentrator Solar Cells: Analysis and Fundamentals
,”
High Concentrator Photovoltaics: Fundamentals, Engineering and Power Plants
,
P.
Pérez-Higueras
and
E. F.
Fernández
, eds.,
Springer International Publishing
, Cham, Switzerland.
65.
Fernández
,
E. F.
,
Almonacid
,
F.
,
Ruiz-Arias
,
J. A.
, and
Soria-Moya
,
A.
,
2014
, “
Analysis of the Spectral Variations on the Performance of High Concentrator Photovoltaic Modules Operating Under Different Real Climate Conditions
,”
Sol. Energy Mater. Sol. Cells
,
127
, pp.
179
187
.
66.
Fernández
,
E. F.
, and
Almonacid
,
F.
,
2014
, “
Spectrally Corrected Direct Normal Irradiance Based on Artificial Neural Networks for High Concentrator Photovoltaic Applications
,”
Energy
,
74
, pp.
941
949
.
67.
Fernández
,
E. F.
,
Siefer
,
G.
,
Almonacid
,
F.
,
Loureiro
,
A. J. G.
, and
Pérez-Higueras
,
P.
,
2013
, “
A Two Subcell Equivalent Solar Cell Model for III–V Triple Junction Solar Cells Under Spectrum and Temperature Variations
,”
Sol. Energy
,
92
, pp.
221
229
.
68.
Peharz
,
G.
,
Siefer
,
G.
, and
Bett
,
A. W.
,
2009
, “
A Simple Method for Quantifying Spectral Impacts on Multi-Junction Solar Cells
,”
Sol. Energy
,
83
(
9
), pp.
1588
1598
.
69.
Fernández
,
E. F.
,
Soria-Moya
,
A.
,
Almonacid
,
F.
, and
Aguilera
,
J.
,
2016
, “
Comparative Assessment of the Spectral Impact of the Energy Yield of High Concentrator and Conventional Photovoltaic Technology
,”
Sol. Energy Mater. Sol. Cells
,
147
, pp.
185
197
.
70.
Fernández
,
E. F.
,
Almonacid
,
F.
,
Soria-Moya
,
A.
, and
Terrados
,
J.
,
2015
, “
Experimental Analysis of the Spectral Factor for Quantifying the Spectral Influence on Concentrator Photovoltaic Systems Under Real Operating Conditions
,”
Energy
,
90
, pp.
1878
1886
.
71.
Rodrigo
,
P.
,
Micheli
,
L.
, and
Almonacid
,
F.
,
2015
, “
The High-Concentrator Photovoltaic Module
,”
High Concentrator Photovoltaics: Fundamentals, Engineering and Power Plants
,
P.
Pérez-Higueras
and
E. F.
Fernández
, eds.,
Springer
, Cham, Switzerland, pp.
115
151
.
72.
Pérez-Higueras
,
P.
,
Muñoz-Rodríguez
,
F. J.
,
Adame-Sánchez
,
C.
,
Hontoria-García
,
L.
,
Rus-Casas
,
C.
,
González-Rodríguez
,
A.
,
Aguilar-Peña
,
J. D.
,
Gallego-Álvarez
,
F. J.
,
González-Luchena
,
I.
, and
Fernández
,
E. F.
,
2015
, “
High-Concentrator Photovoltaic Power Plants: Energy Balance and Case Studies
,”
High Concentrator Photovoltaics: Fundamentals, Engineering and Power Plants
,
P.
Pérez-Higueras
and
E. F.
Fernández
, eds.,
Springer
,
Cham, Switzerland
, pp.
443
477
.
73.
IPC-The Institute for Interconnecting and Packaging Electronic Circuits
,
1998
, “
IPC-TM-650: Die Shear Strength (2.4.42.2)
,”
IPC
,
Bannockburn, IL
.
74.
U.S. Department of Defense, 2013, “MIL-STD-883J: Method 2019.9,” ▪, ▪.
75.
U.S. Defense Logistic Agency, 2014, “Test Method Standard Microcircuits (MIL-STD-883J),”
U.S. Department of Defense
,
Columbus, OH
.
76.
IPC-The Institute for Interconnecting and Packaging Electronic Circuits, 1998, “IPC-TM-650: Wire Bond Pull Strength Date (2.4.42.3),”
IPC
,
Bannockburn, IL
.
77.
U.S. Defense Logistic Agency, 2013, “MIL-STD-883G: Method 2011.9,”
U.S. Department of Defense
,
Columbus, OH
.
78.
Almonacid
,
F.
,
Pérez-Higueras
,
P. J.
,
Fernández
,
E. F.
, and
Rodrigo
,
P.
,
2012
, “
Relation Between the Cell Temperature of a HCPV Module and Atmospheric Parameters
,”
Sol. Energy Mater. Sol. Cells
,
105
, pp.
322
327
.
79.
Fernández
,
E. F.
,
Almonacid
,
F.
,
Rodrigo
,
P.
, and
Pérez-Higueras
,
P.
,
2014
, “
Calculation of the Cell Temperature of a High Concentrator Photovoltaic (HCPV) Module: A Study and Comparison of Different Methods
,”
Sol. Energy Mater. Sol. Cells
,
121
, pp.
144
151
.
80.
Byun
,
I.
,
Ueno
,
R.
, and
Kim
,
B.
,
2014
, “
Micro-Heaters Embedded in PDMS Fabricated Using Dry Peel-Off Process
,”
Microelectron. Eng.
,
121
, pp.
1
4
.
81.
Fernández
,
E. F.
,
Almonacid
,
F.
, and
Garcia-Loureiro
,
A. J.
,
2015
, “
Multi-Junction Solar Cells Electrical Characterization by Neuronal Networks Under Different Irradiance, Spectrum and Cell Temperature
,”
Energy
,
90
, pp.
846
856
.
82.
Domínguez
,
C.
,
Antón
,
I.
, and
Sala
,
G.
,
2010
, “
Multijunction Solar Cell Model for Translating I-V Characteristics as a Function of Irradiance, Spectrum, and Cell Temperature
,”
Prog. Photovoltaics: Res. Appl.
,
18
, pp.
272
284
.
83.
Siefer
,
G.
, and
Bett
,
A. W.
,
2014
, “
Analysis of Temperature Coefficients for III-V Multi-Junction Concentrator Cells
,”
Prog. Photovoltaics: Res. Appl.
,
22
(
5
), pp.
515
524
.
84.
Kinsey
,
G. S.
,
Hebert
,
P.
,
Barbour
,
K. E.
,
Krut
,
D. D.
,
Cotal
,
H. L.
, and
Sherif
,
R. A.
,
2008
, “
Concentrator Multijunction Solar Cell Characteristics Under Variable Intensity and Temperature
,”
Prog. Photovoltaics: Res. Appl.
,
16
(
6
), pp.
503
508
.
85.
Prior
,
B.
,
2011
, Roadmap for CPV Technology: A Study Conducted by GTM Research,
GTM
Research,
San Francisco CA
.
86.
Haysom
,
J. E.
,
Jafarieh
,
O.
,
Anis
,
H.
,
Hinzer
,
K.
, and
Wright
,
D.
,
2015
, “
Learning Curve Analysis of Concentrated Photovoltaic Systems
,”
Prog. Photovoltaics: Res. Appl.
,
23
(11), pp.
1678
1686
.
87.
2013
, “
Concentrated Photovoltaic Solar Installations Set to Boom in the Coming Years
,” IHS Pressroom, last accessed Mar. 8, 2016.
88.
Pryor
,
L.
,
Schlobohm
,
R.
, and
Brownell
,
B.
,
2008
, “
A Comparison of Aluminum vs. Copper as Used in Electrical Equipment
,” GE Industrial Solutions, Plainville, CT.
You do not currently have access to this content.