Solar air conditioners (A/Cs) have attracted much attention in research, but their performance and cost have to be optimized in order to become a real alternative to conventional A/C systems. In this study, a hybrid solar A/C is simulated using the transient systems simulation program(trnsys), which is coupled with matlab in order to carry out the optimization study. The trnsys model is experimentally validated prior to the optimization study. Two optimization problems are formulated with the following design variables: solar collector area, solar collector mass flow rate, solar thermal energy storage volume, and solar electrical energy storage size. The genetic algorithm (GA) is selected to solve the single-objective optimization problem and find the global optimum design for the lowest electrical consumption. To optimize the two objective functions simultaneously, energy consumption and total cost (TC), a multi-objective genetic algorithm (MOGA) is used to find the Pareto curve within the design variables' bounds while satisfying the constraints. The overall cost of the optimized solar A/C design is also compared to a standard vapor compression cycle (VCC). The results show that coupling trnsys and matlab expands trnsys optimization capability in solving more complex optimization problems. The results also show that the optimized solar hybrid A/C is not very competitive when the electricity prices are low and no governmental support is provided.

References

References
1.
Rahman
,
S. M. A.
,
Saidur
,
R.
, and
Hawlader
,
M. N. A.
,
2013
, “
An Economic Optimization of Evaporator and Air Collector Area in a Solar Assisted Heat Pump Drying System
,”
Energy Convers. Manage.
,
76
, pp.
377
384
.
2.
Sanjuan
,
C.
,
Soutullo
,
S.
, and
Heras
,
M. R.
,
2010
, “
Optimization of a Solar Cooling System With Interior Energy Storage
,”
Sol. Energy
,
84
(
7
), pp.
1244
1254
.
3.
Assilzadeh
,
F.
,
Kalogirou
,
S.
,
Ali
,
Y.
, and
Sopian
,
K.
,
2005
, “
Simulation and Optimization of a Libr Solar Absorption Cooling System With Evacuated Tube Collectors
,”
Renewable Energy
,
30
, pp.
43
59
.
4.
Florides
,
G. A.
,
Kalogirou
,
S. A.
,
Tassou
,
S. A.
, and
Wrobel
,
L. C.
,
2002
, “
Modelling, Simulation and Warming Impact Assessment of a Domestic Size Absorption Solar Cooling System
,”
Appl. Therm. Eng.
,
22
(
12
), pp.
1313
1325
.
5.
Florides
,
G. A.
,
Kalogirou
,
S. A.
,
Tassou
,
S. A.
, and
Wrobel
,
L. C.
,
2002
, “
Modelling and Simulation of an Absorption Solar Cooling System for Cyprus
,”
Sol. Energy
,
72
(
1
), pp.
43
51
.
6.
Tashtoush
,
B.
,
Alshare
,
A.
, and
Al-Rifai
,
S.
,
2015
, “
Hourly Dynamic Simulation of Solar Ejector Cooling System Using TRNSYS for Jordanian Climate
,”
Energy Convers. Manage.
,
100
, pp.
288
299
.
7.
Abu-Hamdeh
,
N. H.
,
Alnefaie
,
K. A.
, and
Almitani
,
K. H.
,
2013
, “
Design and Performance Characteristics of Solar Adsorption Refrigeration System Using Parabolic Trough Collector: Experimental and Statistical Optimization Technique
,”
Energy Convers. Manage.
,
74
, pp.
162
170
.
8.
Siddiqui
,
F. R.
,
El-Shaarawi
,
M. A. I.
, and
Said
,
S. A. M.
,
2014
, “
Exergo-Economic Analysis of a Solar Driven Hybrid Storage Absorption Refrigeration Cycle
,”
Energy Convers. Manage.
,
80
, pp.
165
172
.
9.
Saleh
,
A.
, and
Mosa
,
M.
,
2014
, “
Optimization Study of a Single-Effect Water–Lithium Bromide Absorption Refrigeration System Powered by Flat-Plate Collector in Hot Regions
,”
Energy Convers. Manage.
,
87
, pp.
29
36
.
10.
Klein
,
S. A.
,
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2007
, “
TRNSYS 16: A Transient Simulation Program
,”
Thermal Energy System Specialists, LLC
,
Madison, WI
.
11.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
1991
,
Solar Engineering of Thermal Processes
,
Wiley-Interscience
,
New York
.
12.
Zhai
,
X. Q.
, and
Wang
,
R. Z.
,
2009
, “
A Review for Absorption and Adsorption Solar Cooling Systems in China
,”
Renewable Sustainable Energy Rev.
,
13
(6–7), pp.
1523
1531
.
13.
Deng
,
S.
,
Dai
,
Y. J.
, and
Wang
,
R. Z.
,
2013
, “
Performance Optimization and Analysis of Solar Combi-System With Carbon Dioxide Heat Pump
,”
Sol. Energy
,
98
(
C
), pp.
212
225
.
14.
Calise
,
F.
,
Palombo
,
A.
, and
Vanoli
,
L.
,
2010
, “
Maximization of Primary Energy Savings of Solar Heating and Cooling Systems by Transient Simulations and Computer Design of Experiments
,”
Appl. Energy
,
87
(
2
), pp.
524
540
.
15.
Tamasauskas
,
J.
,
Poirier
,
M.
,
Zmeureanu
,
R.
, and
Sunye
,
R.
,
2012
, “
Modeling and Optimization of a Solar Assisted Heat Pump Using Ice Slurry as a Latent Storage Material
,”
Sol. Energy
,
86
(
11
), pp.
3316
3325
.
16.
Al-Alili
,
A.
,
Hwang
,
Y.
,
Radermacher
,
R.
, and
Kubo
,
I.
,
2010
, “
Optimization of a Solar Powered Absorption Cycle Under Abu Dhabi's Weather Conditions
,”
Sol. Energy
,
84
(
12
), pp.
2034
2040
.
17.
Ghiaus
,
C.
, and
Jabbour
,
N.
,
2012
, “
Optimization of Multifunction Multi-Source Solar Systems by Design of Experiments
,”
Sol. Energy
,
86
(
1
), pp.
593
607
.
18.
Wetter
,
M.
,
2001
, “
GenOpt—A Generic Optimization Program
,” Seventh International Building Performance Simulation Association (
IBPSA
), Conference, Rio de Janeiro, Brazil, Aug. 13–15, pp.
601
608
.
19.
Calise
,
F.
,
d'Accadia
,
M. D.
, and
Vanoli
,
L.
,
2011
, “
Thermoeconomic Optimization of Solar Heating and Cooling Systems
,”
Energy Convers. Manage.
,
52
(
2
), pp.
1562
1573
.
20.
Al-Alili
,
A.
,
Hwang
,
Y.
,
Radermacher
,
R.
, and
Kubo
,
I.
,
2012
, “
A High Efficiency Solar Air Conditioner Using Concentrating Photovoltaic/Thermal Collectors
,”
Appl. Energy
,
93
, pp.
138
147
.
21.
MathWorks
,
2009
,
Genetic Algorithm and Direct Search Toolbox, User's Guide
,
MathWorks, Inc.
,
Natick, MA
.
22.
Deb
,
K.
,
2001
,
Multi-Objective Optimization Using Evolutionary Algorithms
,
Wiley
,
New York
.
23.
Al-Alili
,
A.
,
Hwang
,
Y.
, and
Radermacher
,
R.
,
2013
, “
A Hybrid Solar Air Conditioner: Experimental Investigation
,”
Int. J. Refrig.
,
39
, pp.
117
124
.
24.
IEA Solar Heating and Cooling Programme
,
2006
, “
Task 35: PV/Thermal Solar Systems
,”
International Energy Agency
,
Paris
.
25.
Gebreslassie
,
B. H.
,
Guillén-Gosálbez
,
G.
,
Jiménez
,
L.
, and
Boer
,
D.
,
2009
, “
Design of Environmentally Conscious Absorption Cooling Systems Via Multi-Objective Optimization and Life Cycle Assessment
,”
Appl. Energy
,
86
(
9
), pp.
1712
1722
.
26.
Coventry
,
J. S.
,
2005
Performance of a Concentrating Photovoltaic/Thermal Solar Collector
,”
Sol. Energy
,
78
(
2
), pp.
211
222
.
27.
Al-Alili
,
A.
,
Hwang
,
Y.
, and
Radermacher
,
R.
,
2015
, “
Performance of a Desiccant Wheel Cycle Utilizing New Zeolite Material: Experimental Investigation
,”
Energy
,
81
, pp.
137
145
.
28.
Winkler
,
J.
,
Aute
,
V.
, and
Radermacher
,
R.
,
2008
, “
Comprehensive Investigation of Numerical Methods in Simulating a Steady-State Vapor Compression System
,”
Int. J. Refrig.
,
31
(
5
), pp.
930
942
.
29.
Aute
,
V. C.
,
Radermacher
,
R.
, and
Naduvath
,
M. A.
,
2004
, “
Constrained Multi-Objective Optimization of a Condenser Coil Using Evolutionary Algorithms
,”
International Refrigeration and Air Conditioning Conference
, West Lafayette, IN, July 12–15, Paper No. 669.
30.
Trane
,
2008
, “
Product Data: 4DCZ6036A Through 4DCZ6060A. 22-1815-03
,”
Trane, Inc.
,
Dublin, Ireland
.
You do not currently have access to this content.