The objective of this study is to investigate how different volumetric projection techniques used in actuator-line modeling affect the unsteady blade loads and wake turbulence statistics. The two techniques for the body-force projection radius are based on either (i) the grid spacing or (ii) the combination of grid spacing and an equivalent elliptic blade planform. An array of two National Renewable Energy Laboratory 5-MW turbines separated by seven rotor diameters is simulated for 2000 s (about rotor 300 revolutions) within a large-eddy simulation (LES) solver of the neutral and moderately convective atmospheric boundary layer (ABL). The statistics of sectional angle of attack (AOA), blade loads, and turbine power histories are quantified. Moreover, the degree of unsteadiness of sectional blade loads in response to atmospheric and wake turbulence is computed via a reduced frequency based on the rate-of-change in sectional AOA. The goal of this work is to make the wind energy community aware of the uncertainties associated with actuator-line modeling approaches.

References

References
1.
Rathmann
,
O.
,
Frandsen
,
S. T.
, and
Barthelmie
,
R. J.
,
2007
, “
Wake Modelling for Intermediate and Large Wind Farms
,”
European Wind Energy Conference and Exhibition
,
Milan, Italy
, May 7–10, Paper No. BL3.199.
2.
Jensen
,
L. E.
,
2007
,
Array Efficiency at Horns Rev and the Effect of Atmospheric Stability
,
Dong Energy
,
Fredericia, Denmark
.
3.
Vijayakumar
,
G.
,
Lavely
,
A.
,
Jayaraman
,
B.
,
Craven
,
B.
, and
Brasseur
,
J. G.
,
2014
, “
Blade Boundary Layer Response to Atmospheric Boundary Layer Turbulence on a NREL 5MW Wind Turbine Blade With Hybrid URANS-LES
,”
AIAA
Paper No. 2014-0867.
4.
Lavely
,
A.
,
Vijayakumar
,
G.
,
Craven
,
B.
,
Jayaraman
,
B.
,
Jha
,
P. K.
,
Nandi
,
T.
,
Paterson
,
E. G.
, and
Brasseur
,
J. G.
,
2014
, “
Toward a Blade-Resolved Hybrid URANS-LES of the NREL 5-MW Wind Turbine Rotor Within Large Eddy Simulation of the Atmospheric Boundary Layer
,”
AIAA
Paper No. 2014-0869.
5.
Sørensen
,
J. N.
, and
Shen
,
W. Z.
,
2002
, “
Numerical Modeling of Wind Turbine Wakes
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
393
399
.
6.
Shen
,
W. Z.
,
Zhu
,
W. J.
, and
Sørensen
,
J. N.
,
2012
, “
Actuator Line/Navier-Stokes Computations for the MEXICO Rotor: Comparison With Detailed Measurements
,”
Wind Energy
,
15
(
5
), pp.
811
825
.
7.
Shen
,
W. Z.
,
Mikkelsen
,
R.
,
Sørensen
,
J. N.
, and
Bak
,
C.
,
2005
, “
Tip Loss Corrections for Wind Turbine Computations
,”
Wind Energy
,
8
(
4
), pp.
457
475
.
8.
Troldborg
,
N.
,
Sørensen
,
J. N.
, and
Mikkelsen
,
R.
,
2007
, “
Actuator Line Simulation of Wake of Wind Turbine Operating in Turbulent Inflow
,”
J. Phys.: Conf. Ser.
,
75
, p.
012063
.
9.
Troldborg
,
N.
,
Sørensen
,
J.
, and
Mikkelsen
,
R.
,
2010
, “
Numerical Simulations of Wake Characteristics of a Wind Turbine in Uniform Flow
,”
Wind Energy
,
13
(
1
), pp.
86
99
.
10.
OpenCFD
,
2013
, “
OpenFOAM—The Open Source CFD Toolbox
,” Version 2.0.x,
OpenCFD, Ltd., ESI Group
,
Bracknell, UK
, http://www.openfoam.com
11.
Churchfield
,
M. J.
,
Lee
,
S.
,
Michalakes
,
J.
, and
Moriarty
,
P. J.
,
2012
, “
A Numerical Study of the Effects of Atmospheric and Wake Turbulence on Wind Turbine Dynamics
,”
J. Turbul.
,
13
(
12
), pp.
1
32
.
12.
Churchfield
,
M. J.
,
Moriarty
,
P. J.
,
Vijayakumar
,
G.
, and
Brasseur
,
J.
,
2010
, “
Wind Energy-Related Atmospheric Boundary-Layer Large-Eddy Simulation Using OpenFOAM
,”
National Renewable Energy Laboratory
, Golden, CO, Report No. NREL/CP-500-48905.
13.
Churchfield
,
M. J.
,
Lee
,
S.
,
Moriarty
,
P. J.
,
Martínez
,
L. A.
,
Leonardi
,
S.
,
Vijayakumar
,
G.
, and
Brasseur
,
J. G.
,
2012
, “
A Large-Eddy Simulation of Wind-Plant Aerodynamics
,”
AIAA
Paper No. 2012-0537.
14.
Lee
,
S.
,
Churchfield
,
M. J.
,
Moriarty
,
P. J.
,
Jonkman
,
J.
, and
Michalakes
,
J.
,
2012
, “
Atmospheric and Wake Turbulence Impacts on Wind Turbine Fatigue Loadings
,”
AIAA
Paper No. 2012-0540.
15.
Lee
,
S.
,
Churchfield
,
M. J.
,
Moriarty
,
P. J.
,
Jonkman
,
J.
, and
Michalakes
,
J.
,
2013
, “
A Numerical Study of Atmospheric and Wake Turbulence Impacts on Wind Turbine Fatigue Loadings
,”
ASME J. Sol. Energy Eng.
,
35
(
13
), p.
031001
.
16.
Martínez
,
L. A.
,
Leonardi
,
S.
,
Churchfield
,
M. J.
, and
Moriarty
,
P. J.
,
2012
, “
A Comparison of Actuator Disk and Actuator Line Wind Turbine Models and Best Practices for Their Use
,”
AIAA
Paper No. 2012-0900.
17.
Martínez
,
L. A.
,
Churchfield
,
M. J.
, and
Leonardi
,
S.
,
2014
, “
Large Eddy Simulations of the Flow Past Wind Turbines: Actuator Line and Disk Modeling
,”
Wind Energy
,
18
(
6
), pp.
1047
1060
.
18.
Segalini
,
A.
, and
Alfredsson
,
P. H.
,
2013
, “
A Simplified Vortex Model of Propeller and Wind-Turbine Wakes
,”
J. Fluid Mech.
,
725
(
6
), pp.
91
116
.
19.
Okulov
,
V. L.
, and
Sørensen
,
J. N.
,
2010
, “
Maximum Efficiency of Wind Turbine Rotors Using Joukowsky and Betz Approaches
,”
J. Fluid Mech.
,
649
(
4
), pp.
497
508
.
20.
Lu
,
H.
, and
Porté-Agel
,
F.
,
2011
, “
Large-Eddy Simulation of a Very Large Wind Farm in a Stable Atmospheric Boundary Layer
,”
Phys. Fluids
,
23
(
6
), p.
065101
.
21.
Meyers
,
J.
, and
Meneveau
,
C.
,
2010
, “
Large Eddy Simulations of Large Wind-Turbine Arrays in the Atmospheric Boundary Layer
,”
AIAA
Paper No. 2010-827.
22.
Calaf
,
M.
,
Meneveau
,
C.
, and
Meyers
,
J.
,
2010
, “
Large Eddy Simulation Study of Fully Developed Wind-Turbine Array Boundary Layers
,”
Phys. Fluids
,
22
(
1
), p.
015110
.
23.
Meyers
,
J.
, and
Meneveau
,
C.
,
2012
, “
Optimal Turbine Spacing in Fully Developed Wind Farm Boundary Layers
,”
Wind Energy
,
15
(
2
), pp.
305
317
.
24.
VerHulst
,
C.
, and
Meneveau
,
C.
,
2014
, “
Large Eddy Simulation Study of the Kinetic Energy Entrainment by Energetic Turbulent Flow Structures in Large Wind Farms
,”
Phys. Fluids
,
26
(
2
), p.
025113
.
25.
Nathan
,
J.
,
Bautista
,
M.
,
Masson
,
C.
, and
Dufresne
,
L.
,
2014
, “
Study of the Near Wake of a Wind Turbine in ABL Flow Using the Actuator Line Method
,”
J. Phys.: Conf. Ser.
,
524
(
1
), p.
012141
.
26.
Okulov
,
V. L.
, and
Sørensen
,
J. N.
,
2007
, “
Stability of Helical Tip Vortices in a Rotor Far Wake
,”
J. Fluid Mech.
,
576
(
4
), pp.
1
25
.
27.
Viola
,
F.
,
Iungo
,
G. V.
,
Camarri
,
S.
,
Porté-Agel
,
F.
, and
Gallaire
,
F.
,
2014
, “
Prediction of the Hub Vortex Instability in a Wind Turbine Wake: Stability Analysis With Eddy-Viscosity Models Calibrated on Wind Tunnel Data
,”
J. Fluid Mech.
,
750
(
7
), p.
R1
.
28.
Hong
,
J.
,
Toloui
,
M.
,
Chamorro
,
L. P.
,
Guala
,
M.
,
Howard
,
K.
,
Riley
,
S.
,
Tucker
,
J.
, and
Sotiropoulos
,
F.
,
2014
, “
Natural Snowfall Reveals Large-Scale Flow Structures in the Wake of a 2.5-MW Wind Turbine
,”
Nat. Commun.
,
5
, p.
4216
.
29.
Chatelain
,
P.
,
Backaert
,
S.
,
Winckelmans
,
G.
, and
Kern
,
S.
,
2013
, “
Large Eddy Simulation of Wind Turbine Wakes
,”
Flow, Turbul. Combust.
,
91
(
3
), pp.
587
605
.
30.
Stevens
,
R. J. A. M.
,
Graham
,
J.
, and
Meneveau
,
C.
,
2014
, “
A Concurrent Precursor Inflow Method for Large Eddy Simulations and Applications to Finite Length Wind Farms
,”
Renewable Energy
,
68
(
1
), pp.
46
50
.
31.
Leishman
,
J. G.
,
2002
, “
Challenges in Modelling the Unsteady Aerodynamics of Wind Turbines
,”
Wind Energy
,
5
(
2
), pp.
85
132
.
32.
Jha
,
P. K.
,
Churchfield
,
M. J.
,
Moriarty
,
P. J.
, and
Schmitz
,
S.
,
2013
, “
Accuracy of State-of-the-Art Actuator-Line Modeling for Wind Turbine Wakes
,”
AIAA
Paper No. 2013-0608.
33.
Jha
,
P. K.
,
Churchfield
,
M. J.
,
Moriarty
,
P. J.
, and
Schmitz
,
S.
,
2014
, “
Guidelines for Actuator Line Modeling of Wind Turbines on Large-Eddy Simulation-Type Grids
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
031003
.
34.
Jha
,
P. K.
,
Churchfield
,
M. J.
,
Moriarty
,
P. J.
, and
Schmitz
,
S.
,
2014
, “
The Effect of Various Actuator-Line Modeling Approaches on Turbine-Turbine Interactions and Wake-Turbulence Statistics in Atmospheric Boundary-Layer Flow
,”
AIAA
Paper No. 2014-0710.
35.
Jha
,
P. K.
,
Duque
,
E. P. N.
,
Basioum
,
J. L.
, and
Schmitz
,
S.
,
2015
, “
Unraveling the Mysteries of Turbulence Transport in a Wind Farm
,”
Energies
,
8
(
7
), pp.
6468
6496
.
36.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,”
National Renewable Energy Laboratory
, Golden, CO, NREL Report No. TP-500-38060.
37.
Leishman
,
J. G.
,
2006
,
Principles of Helicopter Aerodynamics
(Cambridge Aerospace Series, 2nd ed.),
Cambridge Press
,
New York
, p.
427
.
38.
Oye
,
S.
,
1991
, “
Dynamic Stall, Simulated as a Time Lag of Separation
,”
4th IEA Symposium on the Aerodynamics of Wind Turbines
(
EWEC
), Rome, Nov. 20–21, Vol. ETSU-N-118,
K. F.
McAnulty
, ed.,
Harwell Laboratory
,
Harwell, UK
.
39.
Hansen
,
M. O. L.
,
2008
,
Aerodynamics of Wind Turbines
,
2nd ed.
,
Earthscan Publishing
,
London
, p.
96
.
You do not currently have access to this content.